Skip to main content
Log in

Effect of Nickel Doping on Adsorption of SF6 Decomposition Products over MoS2 Surface

  • Modeling and Simulation of Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To ensure the operating stability of SF6-insulated equipment, an Ni-MoS2 monolayer has been used as an adsorbent to remove the characteristic decomposition products of SF6, viz. SOF2 and SO2F2 gases, from SF6-insulated equipment. All of the calculations are carried out in the density functional theory (DFT) framework. Several adsorption configurations are built and optimized to determine the most stable adsorption structure. In addition, the adsorption geometry, adsorption energy, density of states (DOS), charge transfer, transition states, and electron density difference are calculated to analyze the adsorption properties. The results show that the Ni-MoS2 monolayer exhibits excellent adsorption properties towards both target gases. SOF2 adsorbs on the Ni-MoS2 monolayer by nondissociative chemisorption, while SO2F2 adsorption occurs via dissociative chemisorption. Due to the strong chemical activity of Ni, it significantly increases the electrical conductivity and enhances the adsorption properties of MoS2. The Ni-MoS2 monolayer shows excellent sensitivity to SOF2 and SO2F2, reflected in decreases of the electrical conductivity after adsorption of SOF2 and SO2F2. The Ni-MoS2 monolayer could thus be a promising material for removal of these characteristic SF6 decomposition products under partial discharge conditions. The results of these calculations provide a new approach to ensure the operational stability of SF6-insulated gas-insulated switchgear (GIS) equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Maiss and C.A.M. Brenninkmeijer, Environ. Sci. Technol. 32, 3077 (2015).

    Article  Google Scholar 

  2. I.A. Metwally, Electr. Power Syst. Res. 69, 25 (2004).

    Article  Google Scholar 

  3. F. Zeng, J. Tang, Y. Xie, Q. Zhou, and C. Zhang, J. Electr. Eng. Technol. 10, 1787 (2015).

    Article  Google Scholar 

  4. M. Iio, M. Goto, H. Toyoda, and H. Sugai, Contrib. Plasma Phys. 35, 405 (1995).

    Article  Google Scholar 

  5. X. Zhang, Y. Gui, Y. Zhang, Y. Qiu, and L. Chen, IEEE Trans Dielectr. Electr. Insul. 23, 2633 (2016).

    Article  Google Scholar 

  6. C. Beyer, H. Jenett, and D. Klockow, IEEE Trans Dielectr. Electr. Insul. 7, 234 (2000).

    Article  Google Scholar 

  7. B. Liu, J.G. Zhang, and G. Shen, Nano Today 11, 82 (2016).

    Article  Google Scholar 

  8. J.C. Spear, B.W. Ewers, and J.D. Batteas, Nano Today 10, 301 (2015).

    Article  Google Scholar 

  9. C. Zhu, L. Han, P. Hu, and S. Dong, Nanoscale. 4, 1641 (2012).

    Article  Google Scholar 

  10. N.E. Shi, C.Y. Song, J. Zhang, C. Yuan, and W. Huang, Acta Phys (Sin: Chim, 2011).

    Google Scholar 

  11. B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.H. Kim, S.G. Park, J.D. Kwon, Y.J. Lee, K.H. Lee, B.H. Lee, H.C. Ko, M.G. Hahm, and A.C.S. Appl, Mater. Interfaces 7, 16775 (2015).

    Article  Google Scholar 

  12. Q. Yue, Z. Shao, S. Chang, and J. Li, Nanoscale Res. Lett. 8, 425 (2013).

    Article  Google Scholar 

  13. S.Y. Cho, S.J. Kim, Y. Lee, J.S. Kim, W.B. Jung, H.W. Yoo, J. Kim, and H.T. Jung, ACS Nano 9, 9314 (2015).

    Article  Google Scholar 

  14. S.L. Zhang, H. Yue, X. Liang, and W.C. Yang, J. Nanosci. Nanotechnol. 15, 8004 (2015).

    Article  Google Scholar 

  15. S.R. Shakil, N. Tarannum, and M.K. Rhaman, J Nano Electron. Phys. 9, 06003 (2017).

    Article  Google Scholar 

  16. J. Zhu, H. Zhang, Y. Tong, L. Zhao, Y. Zhang, Y. Qiu, and X. Lin, Appl. Surf. Sci. 419, 522 (2017).

    Article  Google Scholar 

  17. A. Sharma, M.S. Khan, M. Husain, and A. Srivastava, IEEE Sens. J. 18, 2853 (2018).

    Article  Google Scholar 

  18. P. Hohenberg and W. Kohn, Resonance 22, 809 (2017).

    Article  Google Scholar 

  19. B. Delley, Comput. Mater. Sci. 17, 122 (2000).

    Article  Google Scholar 

  20. X. Fu, B. Warot-Fonrose, R. Arras, D. Demaille, M. Eddrief, V. Etgens, and V. Serin, Appl. Phys. Lett. 125, 89 (2015).

    Google Scholar 

  21. S.N. Maximoff, M. Ernzerhof, and G.E. Scuseria, J. Chem. Phys. 120, 2105 (2004).

    Article  Google Scholar 

  22. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  Google Scholar 

  23. Y. Inada and H. Orita, J. Comput. Chem. 29, 225 (2008).

    Article  Google Scholar 

  24. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  Google Scholar 

  25. A.P. Rendell, Chem. Phys. Lett. 229, 204 (1994).

    Article  Google Scholar 

  26. D. Naveh, and A. Ramasubramaniam, Phys. Rev. B. 87, 195201 (2014).

    Google Scholar 

  27. D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Z. Lu, and Z. Yang, Appl. Surf. Sci. 383, 98 (2016).

    Article  Google Scholar 

  28. R.S. Mulliken, J. Chem. Phys. 23, 1841 (1955).

    Article  Google Scholar 

  29. R.P.A. Bettens and A.M. Lee, Chem. Phys. Lett. 449, 341 (2007).

    Article  Google Scholar 

  30. S.R. Broderick and K. Rajan, EPL 95, 57005 (2011).

    Article  Google Scholar 

  31. B.T. Teng, Y. Zhao, F.M. Wu, X.D. Wen, Q.P. Chen, and W.X. Huang, Surf. Sci. 606, 1227 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2018jcyjAX0068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingang Gui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, Y., Sun, H., Wei, H. et al. Effect of Nickel Doping on Adsorption of SF6 Decomposition Products over MoS2 Surface. JOM 71, 3971–3979 (2019). https://doi.org/10.1007/s11837-019-03586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03586-6

Navigation