Skip to main content
Log in

Deformation and Failure Mechanics of Boron Carbide–Titanium Diboride Composites at Multiple Scales

  • Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A coupled modeling and experimental investigation of the mechanical response of a dual-phase composite ceramic is reported. The material consists of boron carbide crystals interspersed with a second phase of titanium diboride, where grains of each phase are of comparable average size. Experiments show a moderate increase in flexure strength and a significant increase in fracture toughness with increasing titanium diboride content. Density functional theory provides elastic properties, surface energy on potential cleavage planes, and stacking fault energy on potential slip systems of the second phase. Energies are found lowest on the basal plane. Findings inform mesoscale simulations of the tensile response of polycrystalline aggregates. These simulations, which invoke a phase-field theory for elasticity, limited slip, and fracture, demonstrate improvement in tensile strength with increasing fraction of titanium diboride grains, in qualitative agreement with experimental trends. Refinements are suggested that would presumably provide more accurate toughness predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Coleman, E. Hernandez-Rivera, K. Behler, J. Synowczynski-Dunn, and M. Tschopp, JOM 68, 1605 (2016).

    Article  Google Scholar 

  2. M. Chen, J. McCauley, and K. Hemker, Science 299, 1563 (2003).

    Article  Google Scholar 

  3. Q. An and W. Goddard, Phys. Rev. Lett. 115, 105051 (2015).

    Google Scholar 

  4. Y. Li, Y. Zhao, W. Liu, Z. Zhang, R. Vogt, E. Lavernia, and J. Schoenung, Philos. Mag. 90, 783 (2010).

    Article  Google Scholar 

  5. D. Vanderwalker and W. Croft, J. Mater. Res. 3, 761 (1988).

    Article  Google Scholar 

  6. L. Sigl and H.J. Kleebe, J. Am. Ceram. Soc. 78, 2374 (1995).

    Article  Google Scholar 

  7. R. White and E. Dickey, J. Am. Ceram. Soc. 94, 4032 (2011).

    Article  Google Scholar 

  8. D. Demirskyi, H. Borodianska, Y. Sakka, and O. Vasylkiv, J. Eur. Ceram. Soc. 37, 393 (2017).

    Article  Google Scholar 

  9. D. Taylor, J. McCauley, and T. Wright, J. Phys. Cond. Matter 24, 505402 (2012).

    Article  Google Scholar 

  10. T. Beaudet, J. Smith, and J. Adams, Sol. State Commun. 219, 43 (2015).

    Article  Google Scholar 

  11. K. Panda and K. Chandran, Comput. Mater. Sci. 35, 134 (2006).

    Article  Google Scholar 

  12. L. Sun, Y. Gao, B. Xiao, Y. Li, and G. Wang, J. Alloys Compd. 579, 457 (2013).

    Article  Google Scholar 

  13. J. Clayton, R. Leavy, and J. Knap, Int. J. Solids Struct. 166, 183 (2019).

    Article  Google Scholar 

  14. G. Quinn, in Ceramic Engineering and Science Proceedings, vol. 27, ed. by R. Tandon, A. Wereszczak, and E. Lara-Curzio (Westerville: American Ceramic Society, 2007), pp. 45–62

    Google Scholar 

  15. M. Taya, S. Hayashi, A. Kobayashi, and H. Yoon, J. Am. Ceram. Soc. 73, 1382 (1990).

    Article  Google Scholar 

  16. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  17. W. Sun, V. Ageh, H. Mohseni, T. Scharf, and J. Du, Appl. Phys. Lett. 104, 241903 (2014).

    Article  Google Scholar 

  18. W. Sun and J. Du, Mod. Simul. Mater. Sci. Eng. 24, 065015 (2016).

    Article  Google Scholar 

  19. R. Munro, J. Res. Natl. Inst. Stand. Technol. 105, 709 (2000).

    Article  Google Scholar 

  20. V. Domnich, S. Reynaud, R. Haber, and M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011).

    Article  Google Scholar 

  21. P. Spoor, J. Maynard, M. Pan, D. Green, J. Hellmann, and T. Tanaka, Appl. Phys. Lett. 70, 1959 (1997).

    Article  Google Scholar 

  22. J. Clayton, Philos. Mag. 92, 2860 (2012).

    Article  Google Scholar 

  23. J. Clayton, Nonlinear Mechanics of Crystals (Dordrecht: Springer, 2011).

    Book  MATH  Google Scholar 

  24. J. Clayton, Int. J. Eng. Sci. 79, 1 (2014).

    Article  Google Scholar 

  25. X. Yang, S. Coleman, J. Lasalvia, W. Goddard, and Q. An, ACS Appl. Mater. Interfaces 10, 5072 (2018).

    Article  Google Scholar 

  26. J. Clayton and J. Knap, Contin. Mech. Thermodyn. 30, 421 (2018).

    Article  MathSciNet  Google Scholar 

  27. J. Clayton and J. Knap, Physica D 240, 841 (2011).

    Article  MathSciNet  Google Scholar 

  28. J. Clayton and J. Knap, Comput. Methods Appl. Mech. Eng. 312, 447 (2016).

    Article  Google Scholar 

  29. J. Clayton, Proc. R. Soc. Lond. A 465, 307 (2009).

    Article  Google Scholar 

  30. J. Clayton, J. Mech. Phys. Solids 53, 261 (2005).

    Article  Google Scholar 

  31. J. Clayton, AIP Conf. Proc. 1979, 180001 (2018).

    Article  Google Scholar 

  32. J. Clayton and J. Knap, Int. J. Fract. 189, 139 (2014).

    Article  Google Scholar 

  33. J. Clayton and J. Knap, Comp. Mater. Sci. 98, 158 (2015).

    Article  Google Scholar 

  34. J. Clayton and J. Knap, J. Micromech. Mol. Phys. 3, 1840001 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

J. D. Clayton acknowledges support from the ARL-WMRD 6.1 FY19 Program Mesoscale Modeling of Heterogeneous Polycrystals. W. S. Rubink, V. Ageh, D. Choudhuri, R. Recuero Chen, J. Du, and T. Scharf acknowledge support from ARL under cooperative agreement W911NF-16-2-0189 with UNT. The authors also acknowledge the Materials Research Facility and the High Performance Computing Facility at UNT. T. Scharf acknowledges a Joint Faculty appointment at ARL South. Dr. J. Lloyd of ARL is thanked for facilitating this collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clayton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, J.D., Rubink, W.S., Ageh, V. et al. Deformation and Failure Mechanics of Boron Carbide–Titanium Diboride Composites at Multiple Scales. JOM 71, 2567–2575 (2019). https://doi.org/10.1007/s11837-019-03548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03548-y

Navigation