Skip to main content
Log in

Microstructure and Properties of W-30 wt.%Cu Composites Reinforced with WC Particles Prepared by Vapor Deposition Carbonization

  • Characterization of Advanced Sintering Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

W/WC composite powders formed of WC ceramic particles dispersed on the surface of tungsten powders were fabricated by vapor deposition carbonization. Furthermore, W-30 wt.%Cu composites reinforced with WC ceramic particles were prepared by mechanical mixing, compacting, sintering, and infiltration. The microstructure, phase composition, and structure of the W/WC composite powders and the W-30 wt.%Cu composites reinforced with WC were characterized. The hardness, electrical conductivity, and arc erosion resistance of the W-30 wt.%Cu composites reinforced with WC were evaluated and compared with those of a conventional W-30 wt.%Cu composite. The results confirmed successful fabrication of the W/WC composite powders and W-30 wt.%Cu composites reinforced with WC. The hardness, electrical conductivity, and arc erosion resistance of the W-30 wt.%Cu composites reinforced with WC were dramatically enhanced due to the introduction of WC ceramic particles by vapor deposition carbonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.Q. Li, N. Deng, P. Wu, and Z.J. Zhou, J. Alloys Compd. 770, 405 (2019).

    Article  Google Scholar 

  2. Y. Li, R.X. Liu, J. Zhang, G.Q. Luo, Q. Shen, and L.M. Zhang, Surf. Coat. Technol. 361, 302 (2019).

    Article  Google Scholar 

  3. C.L. Zhang, Q. Gao, P. Lv, J. Cai, C.T. Peng, Y.X. Jin, and Q.F. Guan, Powder Technol. 325, 340 (2018).

    Article  Google Scholar 

  4. E. Tejado, A.V. Müller, J.H. You, and J.Y. Pastor, Mater. Sci. Eng., A 712, 738 (2018).

    Article  Google Scholar 

  5. M. Ahangarkani, Int. J. Refract. Met. Hard Mater. 72, 15 (2018).

    Article  Google Scholar 

  6. B.Q. Li, Z.Q. Sun, G.L. Hou, P. Hu, and F.L. Yuan, J. Alloys Compd. 766, 204 (2018).

    Article  Google Scholar 

  7. H. Ibrahim, A. Aziz, and A. Rahmat, Int. J. Refract. Met. Hard Mater. 43, 222 (2014).

    Article  Google Scholar 

  8. A. Elaayed, W. Li, O.A. El Kady, W.M. Daoush, E.A. Olevsky, and R.M. German, J. Alloys Compd. 639, 373 (2015).

    Article  Google Scholar 

  9. X. Wei, D.M. Yu, Z.B. Sun, Z.M. Yang, X.P. Song, and B.J. Ding, Vacuum 107, 83 (2014).

    Article  Google Scholar 

  10. S.H. Liang, X.H. Wang, L.L. Wang, W.C. Cao, and Z.K. Fan, J. Alloys Compd. 516, 161 (2012).

    Article  Google Scholar 

  11. S.N. Alam, Mater. Sci. Eng., A 433, 161 (2006).

    Article  Google Scholar 

  12. J.L. Cabezas-Villa, L. Olmos, H.J. Vergara-Hernández, O. Jiménez, P. Garnica, D. Bouvard, and M. Flores, Trans. Nonferrous Met. Soc. China 27, 2214 (2017).

    Article  Google Scholar 

  13. D.L. Yung, M. Antonov, R. Veinthal, and I. Hussainova, Wear 352–353, 171 (2016).

    Article  Google Scholar 

  14. W.Q. Wang, X. Zeng, Y.L. Li, D. Wang, Y. Liu, T. Yamaguchi, K. Nishio, and J. Cao, Mater. Charact. 134, 182 (2017).

    Article  Google Scholar 

  15. X.H. Yang, S.H. Liang, X.H. Wang, P. Xiao, and Z.K. Fan, Int. J. Refract. Met. Hard Mater. 28, 305 (2010).

    Article  Google Scholar 

  16. Y.L. Yuan and Z.G. Li, Surf. Coat. Technol. 328, 256 (2017).

    Article  Google Scholar 

  17. D.D. Gu, Z.Y. Wang, Y.F. Shen, Q. Li, and Y.F. Li, Appl. Surf. Sci. 255, 9230 (2009).

    Article  Google Scholar 

  18. Q. Zhang, S.H. Liang, and L.C. Zhuo, J. Alloys Compd. 708, 796 (2017).

    Article  Google Scholar 

  19. Q. Zhang, S.H. Liang, and L.C. Zhuo, J. Mater. Res. Technol., (2018). https://doi.org/10.1016/j.jmrt.2018.11.003.

  20. F.N. Hao and W.H. Wu, IEEE T. El. In. 25, 557 (1990).

    Article  Google Scholar 

  21. J. Wang, C.Y. Zhang, H. Zhang, Z.M. Yang, and B.J. Ding, Trans. Nonferrous Met. Soc. China 11, 226 (2001).

    Google Scholar 

  22. W.C. Cao, S.H. Liang, X. Zhang, X.H. Wang, and X.H. Yang, Int. J. Refract. Met. Hard Mater. 29, 237 (2011).

    Article  Google Scholar 

  23. W.C. Cao, S.H. Liang, D.Q. Ma, X.H. Wang, and X.H. Yang, Sci. Eng. Powder Metall. 15, 350 (2010).

    Google Scholar 

  24. W.J. Yang, Arc Welding Method and Equipment, 2nd ed. (Harbin: Harbin Institute of Technology Press, 2007), pp. 10–12.

    Google Scholar 

  25. J.P. Sun, Z.X. Zhang, S.M. Hou, G.M. Zhang, X.Y. Zhao, W.M. Liu, and Z.Q. Xue, Acta Electron. Sin. 30, 655 (2002).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Science Foundation of China (NSFC No. 51631002 and 51801151), the Key Research and Development Project of Shaanxi Province (No. 2019ZDLGY05-07 and 2017ZDXM-GY-033), and the Key Laboratory Project of Science and Technology Agency (No. 13JS075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chen, B., Zhao, B. et al. Microstructure and Properties of W-30 wt.%Cu Composites Reinforced with WC Particles Prepared by Vapor Deposition Carbonization. JOM 71, 2541–2548 (2019). https://doi.org/10.1007/s11837-019-03520-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03520-w

Navigation