Skip to main content
Log in

Microstructural Evolution, Precipitation and Mechanical Properties of 27Cr-4Mo-2Ni Super-Ferritic Stainless Steels

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Good mechanical properties and excellent pitting corrosion resistance for 0.8 mm-thick 27Cr-4Mo-2Ni super-ferritic stainless steels produced by one-stage cold rolling or two-stage cold rolling together with intermediate annealing processes are achieved. The microstructural evolution, precipitation and their effects on mechanical properties and corrosion resistance are investigated in terms of optical microscopy, scanning electron microscopy, electron backscattered diffraction pattern and transmission electron microscopy. The results demonstrated that the as-received hot-rolled plates consist of single ferrite grains characterized by α-fiber and γ-fiber orientations. A few Laves phases close to Nb(C, N) are formed in the recrystallized sheets solution-treated at 1050°C. After cold-rolling and finally annealing, fine recrystallized grains characterized by weaken γ-fiber orientation, are accomplished. The formation of Laves phases near the spherical Nb(C, N) makes large Nb(C, N) particles change into small granules. Corrosion resistance is more sensitive to Laves phases than mechanical properties. Small grain size improves strength and ductility, while it has a negative influence on resistance to pitting corrosion. Finer grains and a few more Laves phases are gained in steels processed by a one-stage cold-rolling process. The percentage elongation, yield strength (0.2% proof stress), ultimate tensile strength and average corrosion rate of final sheets produced by a one-stage cold-rolling process are 27.3%, 520 MPa, 641 MPa and 0.033 mm/a, respectively, and the values for two-stage cold-rolling process are 24.4%, 494 MPa, 610 MPa and 0.022 mm/a, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Seo, G. Hultquist, C. Leygraf, and N. Sato, Corros. Sci. 26, 957 (1986).

    Article  Google Scholar 

  2. K. Premachandra, M.B. Cartie, and R.H. Eric, Mater. Sci. Technol. 8, 437 (2013).

    Article  Google Scholar 

  3. I.A. Franson, Metall. Trans. 5, 2257 (1974).

    Article  Google Scholar 

  4. H.H. Lu, Y. Luo, H.K. Guo, W.Q. Li, J.C. Li, and W. Liang, Mater. Sci. Eng. A 735, 31 (2018).

    Article  Google Scholar 

  5. T. Yamagishi, M. Akita, M. Nakajima, Y. Uematsu, and K. Tokaji, Procedia Eng. 2, 275 (2010).

    Article  Google Scholar 

  6. T.J. Nichol, A. Datta, and G. Aggen, Metall. Trans. A 11, 573 (1980).

    Article  Google Scholar 

  7. M.B. Cortie and H. Pollak, Mater. Sci. Eng. A 199, 153 (1995).

    Article  Google Scholar 

  8. D.M.E. Villanueva, F.C.P. Junior, R.L. Plaut, and A.F. Padilha, Mater. Sci. Technol. 22, 1098 (2006).

    Article  Google Scholar 

  9. H.H. Lu, H.K. Guo, Y. Luo, Z.G. Liu, W.Q. Li, J.C. Li, and W. Liang, Mater. Des. 160, 999 (2018).

    Article  Google Scholar 

  10. C.J. Park, M.K. Ahnb, and H.S. Kwon, Mater. Sci. Eng. A 418, 211 (2006).

    Article  Google Scholar 

  11. M.A. Streicher, Corrosion 30, 115 (1974).

    Article  Google Scholar 

  12. T.J. Nichol, Metall. Trans. A 8, 229 (1977).

    Article  Google Scholar 

  13. E.L. Brown, M.E. Burnett, P.T. Purtscher, and G. Krauss, Metall. Trans. A 14, 791 (1983).

    Article  Google Scholar 

  14. T.F. Andrade, A.M. Kliauga, R.L. Plaut, and A.F. Padilha, Mater. Charact. 59, 503 (2008).

    Article  Google Scholar 

  15. H.P. Qu, Y.P. Lang, H.T. Chen, F. Rong, and X.F. Kang, Mater. Sci. Eng. A 534, 436 (2012).

    Article  Google Scholar 

  16. L. Ma, S.S. Hu, J.Q. Shen, J. Han, and Z.X. Zhu, J. Mater. Sci. Technol. 32, 552 (2016).

    Article  Google Scholar 

  17. J. Han, H.J. Li, and H.G. Xu, Mater. Des. 58, 518 (2014).

    Article  Google Scholar 

  18. M.Z. Quadir and B.J. Duggan, ISIJ Int. 46, 1495 (2006).

    Article  Google Scholar 

  19. C. Zhang, Z.Y. Liu, and G.D. Wang, J. Mater. Process. Technol. 211, 1051 (2011).

    Article  Google Scholar 

  20. V. Mehtonen, L.P. Karjalainen, and D.A. Porter, Mater. Sci. Eng. A 571, 1 (2013).

    Article  Google Scholar 

  21. H.T. Liu, Z.Y. Liu, and G.D. Wang, ISIJ Int. 49, 890 (2009).

    Article  Google Scholar 

  22. M.Y. Huh and O. Engler, Mater. Sci. Eng. A 308, 74 (2001).

    Article  Google Scholar 

  23. Z.Y. Liu, F. Gao, L.Z. Jiang, and G.D. Wang, Mater. Sci. Eng. A 527, 3800 (2010).

    Article  Google Scholar 

  24. M.P. Sello and W.E. Stumpf, Mater. Sci. Eng. A 528, 1840 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Projects of International Cooperation in Shanxi with contracts of 201603D421026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang.

Ethics declarations

All data included in this study are available upon request by contact with the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, HH., Lei, WW., Luo, Y. et al. Microstructural Evolution, Precipitation and Mechanical Properties of 27Cr-4Mo-2Ni Super-Ferritic Stainless Steels. JOM 71, 4086–4095 (2019). https://doi.org/10.1007/s11837-019-03473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03473-0

Navigation