Skip to main content
Log in

Microstructure and Mechanical Properties of WMoNbCrTi HEAs Sintered from the Powders Milled for Different Durations

  • Characterization of Advanced Sintering Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Refractory high-entropy alloys (HEAs) are reported to have better properties than conventional alloys. In this work, a new refractory WMoNbCrTi HEA was spark plasma sintered with ball milling powder. The results show that the microstructure and mechanical properties of the bulk alloys are strongly dependent on the milling duration of the powders. The structure of the powders milled for 5–40 h is mainly composed of three BCC solid solution phases (W-rich, Nb-rich and Cr-rich). After being consolidated by SPS, the structure of the bulk alloys consists of a W-rich solid solution matrix with a small amount of Ti-rich solid solution and Laves phase. The WMoNbCrTi HEA prepared from 30 h milling powder shows the highest hardness value of 10.40 GPa. However, the alloy prepared from the 5 h milling powder exhibits the maximum fracture toughness (7.16 MPa m1/2), compressive fracture strength (2765 MPa) and fracture strain (9.8%), respectively. The reasons for the influence of the milling duration on the mechanical properties of the WMoNbCrTi HEAs are discussed in detail. The combination of mechanical alloying and the subsequent sintering is a promising way to fabricate HEAs with controllable mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  3. Z.J. Wang, S. Guo, and C.T. Liu, JOM 66, 1966 (2014).

    Article  Google Scholar 

  4. C.M. Lin and H.L. Tsai, Intermetallics 19, 288 (2011).

    Article  Google Scholar 

  5. A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Int. J. Refract. Met. Hard Mater. 57, 50 (2016).

    Article  Google Scholar 

  6. T.T. Shun, L.Y. Chang, and M.H. Shiu, Mater. Charact. 70, 63 (2012).

    Article  Google Scholar 

  7. J. Chen, X.Y. Zhou, W.L. Wang, B. Liu, Y.K. Lv, W. Yang, D.P. Xu, and Y. Liu, J. Alloys Compd. 760, 15 (2018).

    Article  Google Scholar 

  8. H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, and M. Heilmaier, J. Alloys Compd. 661, 206 (2016).

    Article  Google Scholar 

  9. B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, H.-J. Christ, and M. Heilmaier, J. Alloys Compd. 688, 468 (2016).

    Article  Google Scholar 

  10. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miraclea, and C.F. Woodwarda, J. Alloys Compd. 509, 6043 (2011).

    Article  Google Scholar 

  11. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  12. C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh, Intermetallics 62, 76 (2015).

    Article  Google Scholar 

  13. S.P. Wang and J. Xu, Mater. Sci. Eng. C 73, 80 (2017).

    Article  Google Scholar 

  14. S. Varalakshmi, M. Kamaraj, and B.S. Murty, Mater. Sci. Eng. A 527, 1027 (2010).

    Article  Google Scholar 

  15. D. Kumar, O. Maulik, A.S. Bagri, Y.V.S.S. Prasad, and V. Kumar, Mater. Today Proc. 3, 2926 (2016).

    Article  Google Scholar 

  16. C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, and Y. Long, Scr. Mater. 139, 96 (2017).

    Article  Google Scholar 

  17. J.H. Yan, J.X. Huang, K.L. Li, P. Zhou, Y. Wang, and J.W. Qiu, J. Mater. Eng. Perform. 27, 6218 (2018).

    Article  Google Scholar 

  18. D. Oleszak, A. Antolak-Dudka, and T. Kulik, Mater. Lett. 232, 160 (2018).

    Article  Google Scholar 

  19. J.Y. Pan, T. Dai, T. Lu, X.Y. Ni, J.W. Dai, and M. Li, Mater. Sci. Eng. A 738, 362 (2018).

    Article  Google Scholar 

  20. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, J. Alloys Compd. 767, 1012 (2018).

    Article  Google Scholar 

  21. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).

    Article  Google Scholar 

  22. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, Mater. Sci. Eng. A 712, 616 (2018).

    Article  Google Scholar 

  23. W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, and Z.G. Fu, Intermetallics 56, 24 (2015).

    Article  Google Scholar 

  24. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J. Torralba, Mater. Sci. Eng. A 342, 131 (2003).

    Article  Google Scholar 

  25. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  26. Z.Q. Fu, W.P. Chen, Z. Chen, H.M. Wen, and E.J. Lavernia, Mater. Sci. Eng. A 619, 137 (2014).

    Article  Google Scholar 

  27. H. Wen, Y. Zhao, Y. Liu, O. Torera, K.M. Nesterov, R.K. Islamgaliev, R.Z. Valiev, and E.J. Lavernia, Philos. Mag. 90, 4541 (2010).

    Article  Google Scholar 

  28. H. Wen, R.K. Islamgaliev, K.M. Nesterov, R.Z. Valiev, and E.J. Lavernia, Philos. Mag. Lett. 93, 481 (2013).

    Article  Google Scholar 

  29. W.P. Chen, Z.Q. Fu, S.C. Fang, H.Q. Xiao, and D.Z. Zhu, Mater. Des. 51, 854 (2013).

    Article  Google Scholar 

  30. F.G. Coury, T. Butler, K. Chaput, A. Saville, J. Copley, J. Foltz, P. Mason, K. Clarke, M. Kaufman, and A. Clarke, Mater. Des. 155, 244 (2018).

    Article  Google Scholar 

  31. M. Zhang, X. Zhou, and J. Li, J. Mater. Eng. Perform. 26, 1 (2017).

    Article  Google Scholar 

  32. O.N. Senkov and C.F. Woodward, Mater. Sci. Eng. A 529, 311 (2011).

    Article  Google Scholar 

  33. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mater. Sci. Eng. A 565, 51 (2013).

    Article  Google Scholar 

  34. A.J. Albaaji, E.G. Castle, M.J. Reece, J.P. Hall, and S.L. Evans, Mater. Des. 122, 296 (2017).

    Article  Google Scholar 

  35. M. Cabeza, I. Feijoo, P. Merino, G. Pena, M.C. Péreza, and S. Cruz, Powder Technol. 321, 31 (2017).

    Article  Google Scholar 

  36. X.R. Zhang, Z.X. Zhang, B. Nie, H.Y. Chen, Y.M. Wang, L.Y. Zheng, Y.M. Bai, and W.M. Wang, Ceram. Int. 44, 10766 (2018).

    Article  Google Scholar 

  37. K.A. Nazari, A. Nouri, and T. Hilditch, Mater. Lett. 140, 55 (2015).

    Article  Google Scholar 

  38. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao, Intermetallics 84, 153 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 51475161) and Hunan Provincial Natural Science Foundation of China (No. 2018 JJ2119)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Li, K., Wang, Y. et al. Microstructure and Mechanical Properties of WMoNbCrTi HEAs Sintered from the Powders Milled for Different Durations. JOM 71, 2489–2497 (2019). https://doi.org/10.1007/s11837-019-03432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03432-9

Navigation