Skip to main content
Log in

Effect of Mechanical Alloying and Sintering Behavior on the Microstructure and Properties of NbMoTaWRe Refractory High Entropy Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An equiatomic refractory high-entropy alloy (RHEA) NbMoTaWRe is prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The effects of mechanical alloying and sintering behaviors on the microstructure and properties of the RHEA are investigated. After ball-milling for 30 h, the metastable and supersaturated MA powders with the body-centered cubic (BCC) structure are obtained. Then, the MA powders are sintered using the SPS method under the sintering temperature range of 1700–1900 °C, and the C atoms and WC introduced by the MA process reacts with the metastable and supersaturated Ta/Nb phase of the MA powers to form the face-centered cubic (FCC) structure (Nb, Ta)C particles along the BCC matrix boundaries during the SPS process. The NbMoTaWRe alloy sintered at 1800 °C consisted of BCC matrix and FCC-type (Nb, Ta)C particles has high compactness (porosity fraction is 0.32%), fracture strength (2630 MPa), plastic strain (6.82%), and hardness (992 ± 20 HV). These excellent properties of this RHEA are mainly attributed to the combination of multi-effects, including sintering densification, grain refinement strengthening from the refined sizes (3.80 μm) BCC matrix, precipitation strengthening from the (Nb, Ta)C particles, solid solution strengthening from multi-principal elements and interstitial solid solution strengthening from C atoms dissolving into BCC matrix.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Chen, X.Y. Zhou, W.L. Wang, B. Liu, Y.K. Lv, D.P. Xu, W. Yang, Y. Liu, A review on fundamental of high entropy alloys with promising high temperature properties. J. Alloy. Compd. 760, 15–30 (2018)

    Article  Google Scholar 

  2. W.C. Wei, T. Wang, C.Y. Wang, M. Wu, Y.P. Nie, J. Peng, Ductile W0.4MoNbxTaTi refractory high-entropy alloys with excellent elevated temperature strength. Mater. Lett. 295, 129753 (2021)

    Article  CAS  Google Scholar 

  3. O.N. Senkov, G.B. Wilks, J.M. Scott, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011)

    Article  CAS  Google Scholar 

  4. B. Zhang, M.C. Gao, Y. Zhang, S.M. Guo, Senary refractory high-entropy alloy CrxMoNbTaVW. Calphad 51, 193–201 (2015)

    Article  CAS  Google Scholar 

  5. Y. Long, X.B. Liang, K. Su, H.Y. Peng, X.Z. Li, A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties. J. Alloy. Compd. 780, 607–617 (2019)

    Article  CAS  Google Scholar 

  6. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153–157 (2017)

    Article  CAS  Google Scholar 

  7. Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A 712, 380–385 (2018)

    Article  CAS  Google Scholar 

  8. C.L. Zhu, Z.J. Li, C.F. Hong, P.Q. Dai, J.F. Chen, Microstructure and mechanical properties of the TiZrNbMoTa refractory high-entropy alloy produced by mechanical alloying and spark plasma sintering. Int. J. Refract. Met. H. 93, 105357 (2020)

    Article  CAS  Google Scholar 

  9. B. Zhang, Y.-H. Li, H.-B. Zhou, H.Q. Deng, G.-H. Lu, Segregation and aggregation of rhenium in tungsten grain boundary: Energetics, configurations and strengthening effects. J. Nucl. Mater. 528, 151867 (2020)

    Article  CAS  Google Scholar 

  10. Y. Mutoh, K. Ichikawa, K. Nagata, M. Takeuchi, Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J. Mater. Sci. 30, 770–775 (1995)

    Article  CAS  Google Scholar 

  11. L. Romaner, C. Ambrosch-Draxl, R. Pippan, Effect of rhenium on the dislocation core structure in tungsten. Phys. Rev. Lett. 104, 195503 (2010)

    Article  Google Scholar 

  12. Y.G. Tong, L.H. Bai, X.B. Liang, Y.X. Chen, Z.B. Zhang, J Liu., Y.J. Li, Y.L. Hu, Influence of alloying elements on mechanical and electronic properties of NbMoTaWX (X = Cr, Zr, V, Hf and Re) refractory high entropy alloys. Intermetallics 126, 106928 (2020)

  13. J. Zhang, Y.Y. Hu, Q.Q. Wei, Y. Xiao, P.G. Chen, G.Q. Luo, Q. Shen, Microstructure and mechanical properties of RexNbMoTaW high entropy alloys prepared by arc melting using metal powders. J. Alloy. Compd. 827, 154301 (2020)

    Article  CAS  Google Scholar 

  14. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010)

    Article  CAS  Google Scholar 

  15. H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, T.J. Li, Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater. Design 109, 539–546 (2016)

    Article  CAS  Google Scholar 

  16. H. Song, S. Lee, K. Lee, Thermodynamic parameters, microstructure, and electrochemical properties of equiatomic TiMoVWCr and TiMoVNbZr high-entropy alloys prepared by vacuum arc remelting. Int. J. Refract. Met. H. 99, 105595 (2021)

    Article  CAS  Google Scholar 

  17. J.Y. Pan, T. Dai, T. Lu, X.Y. Ni, J.W. Dai, M. Li, Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 738, 362–366 (2018)

    Article  CAS  Google Scholar 

  18. B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng. A 712, 616–624 (2018)

    Article  CAS  Google Scholar 

  19. Q. Liu, G.F. Wang, X.C. Sui, Y. Xu, Y.K. Liu, J.L. Yang, Ultra-fine grain TixVNbMoTa refractory high-entropy alloys with superior mechanical properties fabricated by powder metallurgy. J. Alloy. Compd. 865, 158592 (2021)

    Article  CAS  Google Scholar 

  20. N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al-Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, Spark plasma sintering of metals and metal matrix nanocomposites. J. Nanomater. 2012, 983470 (2012)

    Article  Google Scholar 

  21. L.-L. Zheng, J.-X. Liu, S.-K. Li, S. Liu, Q.-H. Zou, X.-W. Cheng, Preparation and properties of W-Cu-Zn alloy with low W-W contiguity. Rare Met. 35, 242–248 (2016)

    Article  CAS  Google Scholar 

  22. L. Sun, T.E. Yang, C.C. Jia, J. Xiong, Effects of graphite on the microstructure and properties of ultrafine WC-11Co composites by spark plasma sintering. Rare Met. 30, 63–67 (2011)

    Article  CAS  Google Scholar 

  23. Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh, S.-K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloy. Compd. 481, 768–775 (2009)

    Article  CAS  Google Scholar 

  24. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  CAS  Google Scholar 

  25. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005)

    Article  CAS  Google Scholar 

  26. A. Roh, D. Kim, S. Nam, D.-I Kim, H.-Y. Kim, K.-A. Lee, H. Choi, J.-H. Kim, NbMoTaW refractory high entropy alloy composites strengthened by in-situ metal-non-metal compounds. J. Alloy. Compd. 822, 153423 (2020)

    Article  CAS  Google Scholar 

  27. S.R. Shatynski, The thermochemistry of transition metal carbides. Oxid. Met. 13, 105–118 (1979)

    Article  CAS  Google Scholar 

  28. B. Liu, J.S. Wang, J. Chen, Q.H. Fang, Y. Liu, Ultra-high strength TiC/refractory high-entropy-alloy composite prepared by powder metallurgy. Jom 69, 651–656 (2017)

    Article  CAS  Google Scholar 

  29. L. Sun, C. Lin, C. Jia, X. Jia, M. Xian, Change in relative density of WC-Co cemented carbides in spark plasma sintering process. Rare Met. 27, 74–77 (2008)

    Article  CAS  Google Scholar 

  30. Z. Iqbal, N. Merah, S. Nouari, A.R. Shuaib, N. Al-Aqeeli, Investigation of wear characteristics of spark plasma sintered W-25wt%Re alloy and W-25wt%Re-3.2wt%HfC composite. Tribol. Int. 116, 129–137 (2017)

    Article  CAS  Google Scholar 

  31. C. Zhang, B. Liu, Y. Liu, Q.H. Fang, W.M. Guo, H. Yang, Effects of annealing on microstructure and mechanical properties of metastable powder metallurgy CoCrFeNiMo0.2 high entropy alloy. Entropy 21, 448 (2019)

    Article  CAS  Google Scholar 

  32. Q. Liu, G.F. Wang, X.C. Sui, Y.K. Liu, X. Li, J.L. Yang, Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering. J. Mater. Sci. Technol. 35, 2600–2607 (2019)

    Article  CAS  Google Scholar 

  33. Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 483–484, 148–152 (2008)

    Article  Google Scholar 

  34. Z. Zhang, D.L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Mater. 54, 1321–1326 (2006)

    Article  CAS  Google Scholar 

  35. N. Ramakrishnan, An analytical study on strengthening of particulate reinforced metal matrix composite. Acta Mater. 44, 69–77 (1996)

    Article  CAS  Google Scholar 

  36. H.Z. Li, H. Lin, X.P. Liang, W.W. He, B. Liu, Y. Liu, L. Wang, In situ development and high temperature features of CoCrFeNi-M6Cp high entropy-alloy based hardmetal. Metals 10, 408 (2020)

    Article  CAS  Google Scholar 

  37. L. Hu, M.J. Lin, B. Wei, Hypercooling limit and physical properties of liquid MoNbReTaW refractory high-entropy alloy. Phil. Mag. Lett. 101, 312–319 (2021)

    Article  CAS  Google Scholar 

  38. K. Nakamura, M. Yashima, Crystal structure of NaCl-type transition metal monocarbides MC (M=V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study. Mater. Sci. Eng. B 148, 69–72 (2008)

    Article  CAS  Google Scholar 

  39. S.S. Lv, Y.F. Zu, G.Q. Chen, B.J. Zhao, X.S. Fu, W.L. Zhou, A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardnes. Mater. Sci. Eng. A 795, 140035 (2020)

    Article  CAS  Google Scholar 

  40. Z.Y. Yang, J.Z. Fan, Y.Q. Liu, J.H. Nie, Z.Y. Yang, Y.L. Kang, Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites. Materials 14, 675 (2021)

    Article  CAS  Google Scholar 

  41. Y.C. Cai, L.S. Zhu, Y. Cui, M.D. Shan, H.J. Li, Y. Xin, J. Han, Fracture and wear mechanisms of FeMnCrNiCo + x(TiC) composite high-entropy alloy cladding layers. Appl. Surf. Sci. 543, 148794 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (2018YFC1902400), National Natural Science Foundation of China (51975582), Beijing Postdoctoral Research and Foundation and Youth Fund Project of GRINM (No G12620203129009),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Min Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, T., Wang, LM., Hu, Q. et al. Effect of Mechanical Alloying and Sintering Behavior on the Microstructure and Properties of NbMoTaWRe Refractory High Entropy Alloy. Met. Mater. Int. 28, 2571–2582 (2022). https://doi.org/10.1007/s12540-021-01165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01165-6

Keywords

Navigation