Skip to main content
Log in

Effects of Solute Atoms on 9R Phase Stabilization in High-Performance Al Alloys: A First-Principles Study

  • Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent experiments have proven that the 9R phase can dramatically improve the mechanical properties of Al alloys. This work aims to investigate the effects of solute atoms on 9R phase stabilization in Al alloys through first-principles calculations. Based on two distribution models of solute atoms, namely, the uniform distribution and the Fermi–Dirac distribution models, we discuss the influences of solute concentrations and finite temperatures on the increments of intrinsic stacking fault energy in the 9R phase structure. The results reveal that high-concentration solute atoms (Ga, Ge, Sc, Si, Sn, Sr, and Y) can promote 9R phase stabilization. Among them, the Sr atom shows the highest performance, but its stabilization can be disrupted by high temperature. These findings serve as a valuable guidance for designing and using high-performance Al alloys with the 9R phase structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.C. Williams and E.A. Starke Jr., Acta Mater. 51, 5775 (2003).

    Article  Google Scholar 

  2. J.P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes, Mater. Charact. 35, 41 (1995).

    Article  Google Scholar 

  3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng., A 280, 37 (2000).

    Article  Google Scholar 

  4. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature 549, 365 (2017).

    Article  Google Scholar 

  5. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen, Mater. Sci. Eng., A 652, 353 (2016).

    Article  Google Scholar 

  6. S.Y. Persaud, A. Korinek, J. Huang, G.A. Botton, and R.C. Newman, Corros. Sci. 86, 108 (2014).

    Article  Google Scholar 

  7. S. Xiao, X. Li, H. Deng, L. Deng, and W. Hu, Phys. Chem. Chem. Phys. 17, 6511 (2015).

    Article  Google Scholar 

  8. S.B. Brachetti-Sibaja, M.A. Domínguez-Crespo, S.E. Rodil, and A.M. Torres-Huerta, J. Alloy. Comp. 615, S437 (2014).

    Article  Google Scholar 

  9. A. Shokuhfar and O. Nejadseyfi, Mater. Sci. Eng., A 594, 140 (2014).

    Article  Google Scholar 

  10. A. Deschamps, F.D. Geuser, Z. Horita, S. Lee, and G. Renou, Acta Mater. 66, 105 (2014).

    Article  Google Scholar 

  11. S. Zhao, C. Meng, F. Mao, W. Hu, and G. Gottstein, Acta Mater. 76, 54 (2014).

    Article  Google Scholar 

  12. E. Avtokratova, O. Sitdikov, O. Mukhametdinova, M. Markushev, S.V.S.N. Murty, M.J.N.V. Prasad, and B.P. Kashyap, J. Alloy. Comp. 673, 182 (2016).

    Article  Google Scholar 

  13. M.Y. Murashkin, I. Sabirov, A.E. Medvedev, N.A. Enikeev, W. Lefebvre, R.Z. Valiev, and X. Sauvage, Mater. Design 90, 433 (2016).

    Article  Google Scholar 

  14. D.L. Medlin, G.H. Campbell, and C.B. Carter, Acta Mater. 46, 5135 (1998).

    Article  Google Scholar 

  15. G.H. Campbell, D.K. Chan, D.L. Medlin, J.E. Angelo, and C.B. Carter, Scr. Mater. 35, 837 (1996).

    Article  Google Scholar 

  16. J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, and X. Zhang, Appl. Phys. Lett. 95, 021908 (2009).

    Article  Google Scholar 

  17. F. Ernst, M.W. Finnis, D. Hofmann, T. Muschik, U. Schönberger, U. Wolf, and M. Methfessel, Phys. Rev. Lett. 69, 620 (1992).

    Article  Google Scholar 

  18. D. Hofmann and M.W. Finnis, Acta Metall. Mater. 42, 3555 (1994).

    Article  Google Scholar 

  19. J.D. Rittner, D.N. Seidman, and K.L. Merkle, Phys. Rev. B 53, R4241 (1996).

    Article  Google Scholar 

  20. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Science 300, 1275 (2003).

    Article  Google Scholar 

  21. Q. Li, S.C. Xue, J. Wang, S. Shao, A.H. Kwong, A. Giwa, Z. Fan, Y. Liu, Z.M. Qi, J. Ding, H. Wang, J.R. Greer, H.Y. Wang, and X.H. Zhang, Adv. Mater. 30, 1704629 (2018).

    Article  Google Scholar 

  22. S.C. Xue, Z. Fan, O.B. Lawal, R. Thevamaran, Q. Li, Y. Liu, K.Y. Yu, J. Wang, E.L. Thomas, H.Y. Wang, and X.H. Zhang, Nat. Commun. 8, 1 (2017).

    Article  Google Scholar 

  23. Y.F. Zhang, S. Xue, Q. Li, C. Fan, R. Su, J. Ding, H. Wang, H. Wang, and X. Zhang, Scr. Mater. 148, 5 (2018).

    Article  Google Scholar 

  24. W.Y. Wang, F. Xue, Y. Zhang, S.L. Shang, Y. Wang, K.A. Darling, L.J. Kecskes, J. Li, X. Hui, and Q. Feng, Acta Mater. 145, 30 (2018).

    Article  Google Scholar 

  25. L.H. Liu, J.H. Chen, T.W. Fan, Z.R. Liu, Y. Zhang, and D.W. Yuan, Comp. Mater. Sci. 108, 136 (2015).

    Article  Google Scholar 

  26. T.W. Fan, L.T. Wei, B.Y. Tang, L.M. Peng, and W.J. Ding, Philos. Mag. 94, 1578 (2014).

    Article  Google Scholar 

  27. J. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (New York: Wiley, 1982).

    MATH  Google Scholar 

  28. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  29. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  30. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  31. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  32. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  33. Y.S. Touloukian, R.K. Kirby, R.E. Taylor and P.D. Desai, Therm. Prop. Matter. 12, 178–335 (1975).

    Google Scholar 

  34. Y. Wang, Z.K. Liu, and L.Q. Chen, Acta Mater. 52, 2665 (2004).

    Article  Google Scholar 

  35. T.W. Fan, L.G. Luo, L. Ma, B.Y. Tang, L.M. Peng, and W.J. Ding, Mater. Sci. Eng., A 582, 299 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11572118, 11772122 and 51501060), the Hunan Provincial Science Fund for Distinguished Young Scholars (2015JJ1006), the National Key Research and Development Program of China (2016YFB0700300), the Key Project of Department of Education of Guangdong Province (2016GCZX008), and the Hunan Provincial Innovation Foundation For Postgraduate (CX2017B085). This work was carried out at the National Supercomputer Centers in Changsha.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qihong Fang, Touwen Fan or Dongchu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Fang, Q., Fan, T. et al. Effects of Solute Atoms on 9R Phase Stabilization in High-Performance Al Alloys: A First-Principles Study. JOM 71, 2047–2053 (2019). https://doi.org/10.1007/s11837-019-03420-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03420-z

Navigation