Skip to main content

Advertisement

Log in

Effects of the alloying element on the stacking fault energies of dilute Ir-based superalloys: A comprehensive first-principles study

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Iridium (Ir) has an extremely high melting point (2443 °C), high chemical stability and is one of the most promising high-temperature materials. However, Ir is more difficult to process compared with other face-centered cubic metals, such as Ni and Al, which limits its applications. To solve this problem, we study the effect of 32 alloying elements (X) on stacking fault energy of dilute Ir-based alloys generated by shear deformation using the first-principles calculations. The investigation reveals that there are many alloying elements studied herein decrease the stacking fault energy of face-centered cubic (fcc) Ir, and the most effective element in reducing stacking fault energy of fcc Ir is Zn. The microscopic mechanism is caused by electron redistribution in the local stacking fault area. These results are expected to provide valuable guidance for the further design and application of Ir-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE 1:
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
TABLE 2:
Figure 8:

Similar content being viewed by others

References

  1. L.B. Hunt: History of iridium. Platinum Met. Rev. 31, 32 (1987).

    CAS  Google Scholar 

  2. R. Tuffias, J. Brockmeyer, A. Fortini, B. Williams, and R. Kaplan: Engineering issues of iridium/rhenium rocket engines revisited. In 35th Joint Propulsion Conference and Exhibit (20–24 June 1999, Los Angeles, California).

  3. J. Merker, B. Fischer, D.F. Lupton, and J. Witte: Investigations on structure and high temperature properties of iridium. Mater. Sci. Forum 539–543, 2216 (2007).

    Article  Google Scholar 

  4. A.H. Cottrell: The mechanical properties of matter. Am. J. Phys. 36, 68 (1964).

    Article  Google Scholar 

  5. S.S. Hecker, D.L. Rohr, and D.F. Stein: Brittle fracture in iridium. Metall. Trans. A 9, 481 (1978).

    Article  Google Scholar 

  6. C. Gandhi and M.F. Ashby: On fracture mechanisms of iridium and criteria for cleavage. Scr. Metall. 13, 371 (1979).

    Article  CAS  Google Scholar 

  7. A.N. Gubbi, E.P. George, E.K. Ohriner, and R.H. Zee: Segregation of lutetium and yttrium to grain boundaries in iridium alloys. Acta Mater. 46, 893 (1998).

    Article  CAS  Google Scholar 

  8. C.T. Liu and H. Inouye: Development and Characterization of an Improved Ir–0. 3% W Alloy for Space Radioisotopic Heat Sources (Oak Ridge National Lab., TN, USA, 1977).

    Book  Google Scholar 

  9. Y. Yamabe, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, and H. Harada: Development of Ir-base refractory superalloys. Scr. Mater. 35, 579 (1996).

    Article  Google Scholar 

  10. J.P. Hirth, J. Lothe: Theory of Dislocations (McGraw-Hill Book Company, 1968, p. 637).

    Google Scholar 

  11. S. Ogata, Y. Umeno, and M. Kohyama: First-principles approaches to intrinsic strength and deformation of materials: Perfect crystals, nano-structures, surfaces and interfaces. Modell. Simul. Mater. Sci. Eng. 17, 013001 (2009).

    Article  Google Scholar 

  12. S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, and Z.K. Liu: Temperature-dependent ideal strength and stacking fault energy of fcc Ni: A first-principles study of shear deformation. J. Phys.: Condens. Matter 24, 155402 (2012).

    CAS  Google Scholar 

  13. W.Y. Wang, Y. Zhang, J. Li, C. Zou, B. Tang, H. Wang, D. Lin, J. Wang, H. Kou, and D. Xu: Insight into solid-solution strengthened bulk and stacking faults properties in Ti alloys: A comprehensive first-principles study. J. Mater. Sci. 53, 7493 (2018).

    Article  CAS  Google Scholar 

  14. P. Andric, B. Yin, and W.A. Curtin: Stress-dependence of generalized stacking fault energies. J. Mech. Phys. Solids 122, 262 (2019).

    Article  CAS  Google Scholar 

  15. T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, and Z.F. Zhang: Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations. J. Mater. Sci. Technol. 53, 61 (2020).

    Article  Google Scholar 

  16. B. Cai, Y. Long, C. Wen, Y. Gong, C. Li, J. Tao, and X. Zhu: Role of stacking fault energy and strain rate in strengthening of Cu and Cu–Al alloys. J. Mater. Res. 29, 1747 (2014).

    Article  CAS  Google Scholar 

  17. M. Yuasa, Y. Chino, and M. Mabuchi: Mechanical and chemical effects of solute elements on generalized stacking fault energy of Mg. J. Mater. Res. 29, 2576 (2014).

    Article  CAS  Google Scholar 

  18. D.C.C. Magalhães, A.M. Kliauga, M. Ferrante, and V.L. Sordi: Plastic deformation of FCC alloys at cryogenic temperature: The effect of stacking-fault energy on microstructure and tensile behaviour. J. Mater. Sci. 52, 7466 (2017).

    Article  Google Scholar 

  19. S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, and Z.K. Liu: Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J. Phys.: Condens. Matter 24, 505403 (2012).

    CAS  Google Scholar 

  20. L-Y. Tian, R. Lizárraga, H. Larsson, E. Holmström, and L. Vitos: A first principles study of the stacking fault energies for fcc Co-based binary alloys. Acta Mater. 136, 215 (2017).

    Article  CAS  Google Scholar 

  21. W.Y. Wang, S.L. Shang, Y. Wang, Z.G. Mei, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X.D. Hui, and Z.K. Liu: Effects of alloying elements on stacking fault energies and electronic structures of binary Mg alloys: A first-principles study. Mater. Res. Lett. 2, 29 (2014).

    Article  CAS  Google Scholar 

  22. C. Wang, H.Y. Zhang, H.Y. Wang, G.J. Liu, and Q.C. Jiang: Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations. Scr. Mater. 69, 445 (2013).

    Article  CAS  Google Scholar 

  23. S.H. Zhang, I.J. Beyerlein, D. Legut, Z.H. Fu, Z. Zhang, S.L. Shang, Z.K. Liu, T.C. Germann, and R.F. Zhang: First-principles investigation of strain effects on the stacking fault energies, dislocation core structure, and Peierls stress of magnesium and its alloys. Phys. Rev. B 95 (2017).

  24. S. Chen, Q. Wang, X. Liu, J. Tao, J. Wang, M. Wang, and H. Wang: First-principles studies of intrinsic stacking fault energies and elastic properties of Al-based alloys. Mater. Today Commun. 24, 1 (2020).

    Google Scholar 

  25. Y. Zhang, J. Li, W.Y. Wang, P. Li, B. Tang, J. Wang, H. Kou, S. Shang, Y. Wang, L.J. Kecskes, X. Hui, Q. Feng, and Z-K. Liu: When a defect is a pathway to improve stability: A case study of the L12 Co3TM superlattice intrinsic stacking fault. J. Mater. Sci. 54, 13609 (2019).

    Article  CAS  Google Scholar 

  26. H-S. Bao, Z-H. Gong, Z-Z. Chen, and G. Yang: Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents. Rare Met. 39, 716 (2020).

    Article  CAS  Google Scholar 

  27. X-Z. Wu, R. Wang, S-F. Wang, and Q-Y. Wei: Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for FCC metals. Appl. Surf. Sci. 256, 6345 (2010).

    Article  CAS  Google Scholar 

  28. Z.H. Jin, S.T. Dunham, H. Gleiter, H. Hahn, and P. Gumbsch: A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater. 64, 605 (2011).

    Article  CAS  Google Scholar 

  29. Y.N. Gornostyrev, M.I. Katsnelson, N.I. Medvedeva, O.N. Mryasov, A.J. Freeman, and A.V. Trefilov: Peculiarities of defect structure and mechanical properties of iridium results of ab initio electronic structure calculations. Phys. Rev. B 62, 7802 (2000).

    Article  CAS  Google Scholar 

  30. R. Adamesku, V. Barkhatov, and A. Yermakov: Elastic Properties of Iridium Single Crystals. Vysokochistye Veschestva, 3, 129 (1990).

    Google Scholar 

  31. T.J. Balk and K.J. Hemker: High resolution transmission electron microscopy of dislocation core dissociations in gold and iridium. Philos. Mag. A 81, 1507 (2001).

    Article  CAS  Google Scholar 

  32. L. Vitos, J.O. Nilsson, and B. Johansson: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Mater. 54, 3821 (2006).

    Article  CAS  Google Scholar 

  33. Y. Qi and R.K. Mishra: Ab initio study of the effect of solute atoms on the stacking fault energy in aluminum. Phy. Rev. B 75, 224105 (2007).

    Article  Google Scholar 

  34. P.N.H. Nakashima, A.E. Smith, J. Etheridge, and B.C. Muddle: The bonding electron density in aluminum. Science 331, 1583 (2011).

    Article  CAS  Google Scholar 

  35. S.L. Shang, W.Y. Wang, B.C. Zhou, Y. Wang, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, and Z.K. Liu: Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Mater. 67, 168 (2014).

    Article  CAS  Google Scholar 

  36. S.L. Shang, D.E. Kim, C.L. Zacherl, Y. Wang, Y. Du, and Z.K. Liu: Effects of alloying elements and temperature on the elastic properties of dilute Ni-base superalloys from first-principles calculations. J. Appl. Phys. 112, 053515 (2012).

    Article  Google Scholar 

  37. W.W. Xu, S.L. Shang, C.P. Wang, T.Q. Gang, Y.F. Huang, L.J. Chen, X.J. Liu, and Z.K. Liu: Accelerating exploitation of Co-Al-based superalloys from theoretical study. Mater. Des. 142, 139 (2018).

    Article  CAS  Google Scholar 

  38. M.D. Segall, R. Shah, and C.J. Pickard: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54, 16317 (1996).

    Article  CAS  Google Scholar 

  39. X. Chong, Y. Jiang, R. Zhou, and J. Feng: First principles study the stability, mechanical and electronic properties of manganese carbides. Comput. Mater. Sci. 87, 19 (2014).

    Article  CAS  Google Scholar 

  40. C. Emmanuel: Screw dislocation in zirconium: An ab initio study. Phys. Rev. B 86, 144104 (2012).

    Article  Google Scholar 

  41. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, and S.J. Clark: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  42. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province (2019, 202002AB080001-1) and the Open Fund of the National Joint Engineering Research Center for abrasion control and molding of metal materials (No. HKDNM201904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Chong or Yan Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Chong, X., Zhou, Y. et al. Effects of the alloying element on the stacking fault energies of dilute Ir-based superalloys: A comprehensive first-principles study. Journal of Materials Research 35, 2718–2725 (2020). https://doi.org/10.1557/jmr.2020.277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.277

Navigation