Skip to main content
Log in

The Current Status and Development of Semi-solid Powder Forming (SPF)

  • Aluminum: Shape Casting and Forming
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Semi-solid powder forming is a promising near-net-shaped forming technology, which has the advantages of powder metallurgy and semi-solid forming, such as fine grains, low forming pressure and short process flow. It was used to prepare wide solidification range alloys and its composites. Until now, there have been many studies on the parameters, microstructure and mechanical properties of this technology, but few on the forming principles. Because deformation, solidification and densification occur simultaneously, the forming mechanism is very complex. The liquid fraction is the key factor influencing the microstructure and mechanical properties. Semi-solid compression of porous materials was carried out to study the deformation mechanism of semi-solid powders. The combination mechanism and densification process for semi-solid powder rolling has been analyzed, and the compaction behavior of powders in the semi-solid state has been studied. Shima porous yield criterion and Doraivelu plastic yield criterion were applied in the simulation of semi-solid powder rolling. Based on the Fourier heat conduction equation and the related parameters of semi-solid powder, the rolling force and relative density were simulated by using the Marc finite element software platform. The simulation results are in agreement with the experimental results. Although some achievements have been made in the theoretical research and numerical simulation, the yield criteria and mathematical models suitable for semi-solid powder forming need to be further established. In addition, further optimization of this technology and its application in commercial applications should be the research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. 5.

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reprinted with permission from Ref. 26

Fig. 6

Reprinted with permission from Ref. 28

Fig. 7

Reprinted with permission from Ref. 35

Fig. 8

Reprinted with permission from Ref. 26

Fig. 9

Reprinted with permission from Ref. 26

Fig. 10
Fig. 11
Fig. 12
Fig. 13

Reprinted with permission from Ref. 35

Fig. 14

Reprinted with permission from Ref. 35

Similar content being viewed by others

References

  1. D.B. Spencer, R. Mehrabian, and M.C. Flemings, Metall. Trans. 3, 1925 (1972).

    Article  Google Scholar 

  2. M. Kiuchi and R. Kopp, CIRP Ann. Manuf. Technol. 51, 653 (2002).

    Article  Google Scholar 

  3. D. Walukas, S. Labeau, N. Prewitt, and R. Decker, Mater. Technol. 109, 1 (2000).

    Google Scholar 

  4. R.M.K. Yong and T.W. Clyne, J. Mater. Sci. 21, 1057 (1986).

    Article  Google Scholar 

  5. Y.F. Wu, Development of Novel Semisolid Powder Processing for Micro-Manufacturing, Graduate Theses and Dissertations, Paper 10568 (2009).

  6. T.J. Chen, H. Qin, and X.Z. Zhang, J. Mater. Sci. 53, 2576 (2018).

    Article  Google Scholar 

  7. T. Marooka, Met. Powder Rep. 52, 39 (1997).

    Article  Google Scholar 

  8. S.J. Luo and L.J. Zu, Trans. Nonferrous Met. Soc. China 10, 304 (2000).

    MathSciNet  Google Scholar 

  9. L.J. Zu, S.J. Luo, and H.Y. Zhang, J. Harbin Inst. Technol. 32, 69 (2000) (in Chinese).

    Google Scholar 

  10. L.J. Zu and S.J. Luo, Trans. Nonferrous Met. Soc. China 10, 179 (2000) (in Chinese).

    Google Scholar 

  11. L.J. Zu and S.J. Luo, J. Mater. Proc. Technol. 114, 189 (2001).

    Article  Google Scholar 

  12. S.J. Luo, Y.S. Cheng, and P.X. Wang, Trans. Nonferrous Met. Soc. China 16, 772 (2006).

    Article  Google Scholar 

  13. R.W. Hamilton, Z. Zhu, R.J. Dashwood, and P.D. Lee, Compos. A 34, 333 (2003).

    Article  Google Scholar 

  14. K. Yasue, G.L. Yu, C.E. Wen, and Y. Yamada, J. Mater. Sci. 35, 5927 (2000).

    Article  Google Scholar 

  15. C.E. Wen, K. Yasue, and Y. Yamada, J. Mater. Sci. 36, 1741 (2001).

    Article  Google Scholar 

  16. C.M. Chen, C.C. Yang, and C.G. Chao, J. Mater. Proc. Technol. 167, 103 (2005).

    Article  Google Scholar 

  17. Y. F. Wu, G.Y. Kim, I.E. Anderson, and T. Lograsso, Fabrication of graded structure in SiC-reinforced metal matrix by semisolid powder processing, Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference. USA, West Lafayette, Indiana, vol. 10 (2009), p. 4.

  18. Y.F. Wu, G.Y. Kim, I.E. Anderson, and T. Lograsso, J. Manuf. Sci. Eng. 132, 0110031 (2010).

    Google Scholar 

  19. Y.F. Wu, G.Y. Kim, I.E. Anderson, and T. Lograsso, Acta Mater. 58, 4398 (2010).

    Article  Google Scholar 

  20. Y.F. Wu and G.Y. Kim, J. Mater. Proc. Technol. 211, 1341 (2011).

    Article  Google Scholar 

  21. Y.F. Wu and G.Y. Kim, Powder Technol. 214, 252 (2011).

    Article  Google Scholar 

  22. Y.F. Wu, Fabrication of Metal Matrix Composite by Semi-Solid Powder Processing (Ames: Iowa State University, 2011).

    Book  Google Scholar 

  23. Y.F. Wu, G.Y. Kim, and A.M. Russell, Mater. Sci. Eng. A 532, 558 (2012).

    Article  Google Scholar 

  24. Y.F. Wu, G.Y. Kim, and A.M. Russell, Mater. Sci. Eng. A 538, 164 (2012).

    Article  Google Scholar 

  25. M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S.R. Wang, X.D. Tang, and X.W. Wang, Compos. B 60, 111 (2014).

    Article  Google Scholar 

  26. Y.Z. Liu, X. Luo, and Z.L. Li, J. Mater. Proc. Technol. 214, 165 (2014).

    Article  Google Scholar 

  27. X. Luo, Y.Z. Liu, C.X. Gu, and Z.L. Li, Powder Technol. 216, 161 (2014).

    Article  Google Scholar 

  28. X. Luo, Y.Z. Liu, Z.Q. Mo, and C.X. Gu, Metall. Mater. Trans. A 46A, 2185 (2015).

    Article  Google Scholar 

  29. X. Luo, Y.Z. Liu, and H.F. Jia, Oxid. Met. 83, 55 (2015).

    Article  Google Scholar 

  30. X. Luo, Study on the Process and Principle of Semi-solid Powder Rolling for Preparation of 7050 Aluminum Strip, South China University of Technology, Doctoral thesis (2015) (in Chinese).

  31. X. Luo and Y.Z. Liu, JOM 68, 3078 (2016).

    Article  Google Scholar 

  32. Z.Q. Mo, Y.Z. Liu, H.F. Jia, and M. Wu, Trans. Nonferrous Met. Soc. China 25, 3181 (2015).

    Article  Google Scholar 

  33. W. Min, Y.Z. Liu, T. Wang, and K.B. Yu, Mater. Sci. Eng. A 674, 144 (2016).

    Google Scholar 

  34. W. Min, Y.Z. Liu, Z. Zeng, and W.Y. Luo, JOM 69, 763 (2017).

    Article  Google Scholar 

  35. M. Wu, Process Principles and Numerical Simulation on Semi-Solid Powder Forming and Porous Materials Deformation of 2024 Aluminum Alloy. South China University of Technology, Doctoral thesis (2018) (in Chinese).

  36. Y.F. Zhang, Microstructure and Properties of Thixomolding Magnesium Alloy and Simulation of Forming Process. Jilin University, Doctoral thesis (2008) (in Chinese).

  37. J.L. Tang and D.B. Zeng, Foundry Equip. Technol. China 6, 3 (2000) (in Chinese).

    Google Scholar 

  38. D. Ghosh, K. Kang, C. Bach, et al., Properties and microstructure of thixomolded and heat treated AZ61A magnesium alloy.Advanced in Production and Fabrication of Light Metals and Metal Matrix Composites, ed. M.M. Avedesian, L.J. Larouehe, and J. Masounave (Montreal: The Metallurgical Society of the CIM, 1992), p. 399.

    Google Scholar 

  39. B. Mansoor, S. Mukherjee, and A. Ghosh, Mater. Sci. Eng. A 512, 10 (2009).

    Article  Google Scholar 

  40. R.D. Carnahan, R. Hathaway, and R. Kilbert, Thixomolded AZ91D magnesium: mechanical and microstructural property dependency on process parameter variations. Proceedings of the International Symposium on Light metals Processing and Applications, Quebec City, PQ (1993), p. 325.

  41. T. Tsukeda, K. Takeya, K. Saito, et al., J. Jpn. Inst. Light Met. 49, 287 (1999).

    Article  Google Scholar 

  42. F. Czerwinski, P.J. Pinet, and J. Overbeeke, The Influence of Primary Solid Content on the Tensile Properties of a Thixomolded AZ91D Magnesium Alloy, Magnesium Technology 2001 of TMS (New Orleans, LA: The Minerals, Metals & Materials Society, 2001), p. 99.

    Google Scholar 

  43. F. Czerwinski, A. Zielinska, P.J. Pinet, and J. Overbeeke, Acta Mater. 49, 1225 (2001).

    Article  Google Scholar 

  44. F. Czerwinski, Acta Mater. 50, 3265 (2002).

    Google Scholar 

  45. F. Czerwinski, Scr. Mater. 48, 327 (2003).

    Article  Google Scholar 

  46. F. Czerwinski, Acta Mater. 52, 5057 (2004).

    Article  Google Scholar 

  47. F. Czerwinski, Acta Mater. 53, 1973 (2005).

    Article  Google Scholar 

  48. F. Czerwinski, Metall. Mater. Trans. B 1, 3320 (2018).

    Google Scholar 

  49. M. Scharrer, A. Lohmüller, R.M. Hilbinger, et al., Advances in Magnesium Injection Molding (Thixomolding®). Proceedings of the 7th International Conference Magnesium Alloys and Their Applications, Dresden (2006).

  50. H. Frank, N. Hort, H. Dieringa, and K.-U. Kainer, Solid State Phenom. 141–143, 43 (2008).

    Google Scholar 

  51. W. Liang, Y.B. Liu, X.P. Cui, et al., Automot. Technol. Mater. 15, 15 (2004) (in Chinese).

    Google Scholar 

  52. Y.F. Zhang, Y.B. Liu, Z.Y. Cao, L. Zhang, and Q.Q. Zhang, Trans. Nonferr. Met. Soc. China 18, 703 (2008) (in Chinese).

    Google Scholar 

  53. Y.F. Zhang, Y.B. Liu, Q.Q. Zhang, Z.Y. Cao, X.P. Cui, and Y. Wang, Mater. Sci. Eng. A 444, 251 (2007).

    Article  Google Scholar 

  54. X.P. Cui, H.Y. Xu, H.F. Liu, T. Zhang, and Y.B. Liu, Adv. Mater. Res. 503–504, 90 (2012).

    Article  Google Scholar 

  55. H.A. Patel, D.L. Chen, S.D. Bhole, and K. Sadayappan, J. Alloys Compd. 496, 140 (2010).

    Article  Google Scholar 

  56. L.J. Yang, Y.H. Wei, and L.F. Hou, J. Mater. Sci. 45, 3626 (2010).

    Article  Google Scholar 

  57. T.D. Berman, Microstructure Evolution and Tensile Deformation in Mg Alloy AZ61 through Thixomolding and Thermomechanical Processing. University of Michigan, Doctoral thesis (2014).

  58. L.P. Lei, Y.H. Zhao, and P. Zeng, Supercond. Sci. Technol. 18, 818 (2005) (in Chinese).

    Article  Google Scholar 

  59. M.J. Liu, W. Xia, and Z.Y. Zhou, Mach. Design Manuf. 532–533, 817 (2006) (in Chinese).

    Google Scholar 

  60. Z.X. Zheng Experimental and Numerical modeling for powder rolling. International Conference on Physical and Numerical Simulation of Materials Processing (2010), p. 115.

  61. C. Qiu, Z.X. Zheng, W. Xia, and Z.Y. Zhou, Adv. Mater. Res. 211–212, 1182 (2011).

    Article  Google Scholar 

  62. M.J. Liu and G.C. Liu, Adv. Mater. Res. 569, 111 (2012).

    Article  Google Scholar 

  63. H.J. Chang, H.N. Han, and S.H. Joo, Int. J. Mach. Tools Manuf. 47, 1573 (2007).

    Article  Google Scholar 

  64. A. Michrafy, H. Diarra, J.A. Dodds, and M. Michrafy, Powder Technol. 206, 154 (2011).

    Article  Google Scholar 

  65. A. Michrafy, H. Diarra, J.A. Dodds, M. Michrafy, and L. Penazzi, Powder Technol. 208, 417 (2011).

    Article  Google Scholar 

  66. H.B. Li, Finite Element Simulation and Experimental Study on Rolling Process of Powder Metallurgy Molybdenum Plate (Taiyuan: Taiyuan University of Technology, 2011) (in Chinese).

    Google Scholar 

  67. A.R. Muliadi, J.D. Litster, and C.R. Wassgren, Powder Technol. 221, 90 (2012).

    Article  Google Scholar 

  68. A.R. Muliadi, J.D. Litster, and C.R. Wassgren, Powder Technol. 237, 386 (2013).

    Article  Google Scholar 

  69. V. Esnault, A. Michrafy, D. Heitzmann, M. Michrafy, and D. Oulahna, Powder Technol. 270, 484 (2015).

    Article  Google Scholar 

  70. H.V. Atkinson, Cheminform 36, 341 (2005).

    Article  MathSciNet  Google Scholar 

  71. J. Chowdhury, S. Ganguly, and S. Chakraborty, J. Phys D 38, 2869 (2005).

    Article  Google Scholar 

  72. V. Favier and H. Atkinson, Trans. Nonferrous Met. Soc. China 20, 1691 (2010).

    Article  Google Scholar 

  73. V. Favier and H.V. Atkinson, Acta Mater. 59, 1271 (2011).

    Article  Google Scholar 

  74. A. Neag, V. Favier, R. Bigot, and H.V. Atkinson, J. Mater. Proc. Technol. 229, 338 (2016).

    Article  Google Scholar 

  75. V. Favier, P. Cézard, and R. Bigot, Mater. Sci. Eng. A 517, 8 (2009).

    Article  Google Scholar 

  76. R. Koeune and J.P. Ponthot, Int. J. Plastic. 58, 120 (2014).

    Article  Google Scholar 

  77. R. Koeune and J.P. Ponthot, J. Comput. Appl. Math. 234, 2287 (2008).

    Article  Google Scholar 

  78. C.G. Kang and J.H. Yoon, J. Mater. Proc. Technol. 66, 76 (1997).

    Article  Google Scholar 

  79. C.G. Kang and H.K. Jung, Int. J. Mech. Sci. 41, 1423 (1999).

    Article  Google Scholar 

  80. J.H. Hwang, D.C. Ko, and G.S. Min, Int. J. Mach. Tools Manuf. 40, 1311 (2000).

    Article  Google Scholar 

  81. D.C. Ko, G.S. Min, B.M. Kim, and J.C. Choi, J. Mater. Proc. Technol. 100, 95 (2000).

    Article  Google Scholar 

  82. C.G. Kang, P.K. Seo, and M.D. Lim, Int. J. Mech. Sci. 45, 1949 (2003).

    Article  Google Scholar 

  83. S. Shima and M. Oyane, Int. J. Mech. Sci. 18, 285 (1976).

    Article  Google Scholar 

  84. K. Raju, S.N. Ojha, and A.P. Harsha, J. Mater. Sci. 43, 2509 (2008).

    Article  Google Scholar 

  85. Y.Z. Du, B.L. Jiang, and Y.F. Ge, Vacuum 148, 27 (2018).

    Article  Google Scholar 

  86. S. Karagadde, P.D. Lee, B. Cai, J.L. Fife, M.A. Azeem, K.M. Kareh, C. Puncreobutr, D. Tsivoulas, T. Connolley, and R.C. Atwood, Nat. Commun. 6, 8300 (2015). https://doi.org/10.1038/ncomms9300.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Young Scholars Development Fund of SWPU (No. 201599010066), National Natural Science Foundation of China (No. 51704255), and Open Fund of National Engineering Research Center of Near-net-shape Forming Technology for Metallic Materials, South China University of Technology (No. 2015002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Wu, M., Fang, C. et al. The Current Status and Development of Semi-solid Powder Forming (SPF). JOM 71, 4349–4361 (2019). https://doi.org/10.1007/s11837-019-03419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03419-6

Navigation