Skip to main content
Log in

Development of CoCrFeNiVAlx High-Entropy Alloys Based on Solid Solution Strengthening

  • Progress in High-Entropy Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

CoCrFeNiVAlx (x values in molar ratio, x = 0, 0.5, 1.0, 1.5 and 2.0, respectively) high-entropy alloys have been designed and prepared. Microstructure and mechanical properties of the CoCrFeNiVAlx alloys have been studied in as-cast conditions. The fcc (face-centered cubic structure) phase and the σ phase (intermetallic phase) have been observed in the CoCrFeNiV alloy. With the increase of Al content, the alloy structure has a tendency to change to a single stable bcc (body-centered cubic) structure. The effect of solid solution strengthening on the compressive strength of the alloy is more obvious with the addition of Al, which is the most significant in the CoCrFeNiVAl1.5 alloy. This alloy shows good comprehensive mechanical properties, i.e., the compressive strength, plasticity and microhardness reach as high as 2140 MPa, 9.5% and 684.9 HV, respectively. High-performance CoCrFeNiVAlx alloys are worth further study for applications of high-entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.Y. Chen, X. Yang, K.A. Dahmen, P.K. Liaw, and Y. Zhang, Entropy 16, 870 (2014).

    Article  Google Scholar 

  2. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Mater. Sci. Eng., A 508, 214 (2009).

    Article  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  4. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 (2016).

    Article  Google Scholar 

  5. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Mater. Sci. Eng. A 533, 107 (2012).

    Article  Google Scholar 

  6. S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada, J. Alloys Compd. 662, 361 (2016).

    Article  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  8. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  9. G. Sheng and C.T. Liu, Prog. Nat. Sci. Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

  10. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  11. L. Xie, P. Brault, A.L. Thomann, X. Yang, Y. Zhang, and G.Y. Shang, Intermetallics 68, 78 (2016).

    Article  Google Scholar 

  12. D.Y. Li and Y. Zhang, Intermetallics 70, 24 (2016).

    Article  Google Scholar 

  13. S.Y. Chen, X. Xie, W.D. Li, R. Feng, B.L. Chen, J.W. Qiao, Y. Ren, Y. Zhang, K.A. Dahmen, and P.K. Liaw, Mater. Chem. Phys. 210, 20 (2018).

    Article  Google Scholar 

  14. C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, and S.Y. Chang, Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  15. M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and C.P. Tu, Mater. Trans. 47, 1395 (2006).

    Article  Google Scholar 

  16. M.R. Chen, S.J. Lin, J.W. Yeh, M.H. Chuang, S.K. Chen, and Y.S. Huang, Metall. Mater. Trans. A 37, 1363 (2006).

    Article  Google Scholar 

  17. Y. Zhang, D. Pelliccia, B. Milkereit, N. Kirby, M.J. Starink, and P.A. Rometsch, Mater. Des. 142, 259 (2018).

    Article  Google Scholar 

  18. H.M. Ye, Y.Z. Zhan, and N. Nie, Mater. Sci. Technol. 34, 952 (2018).

    Article  Google Scholar 

  19. Y.J. Zhou, Y. Zhang, F.J. Wang, Y.L. Wang, and G.L. Chen, J. Alloys Compd. 466, 201 (2008).

    Article  Google Scholar 

  20. Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).

    Article  Google Scholar 

  21. Y. Dong, Y.P. Lu, L. Jiang, T.M. Wang, and T.J. Li, Intermetallics 52, 105 (2014).

    Article  Google Scholar 

  22. O.N. Senkov and D.B. Miracle, Mater. Res. Bull. 36, 2183 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Key R&D Program of China (2016YFB0301400), the National Natural Science Foundation of China (51761002), the Training Plan of High-Level Talents of Guangxi University (XMPZ160714), and the research project of Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials (GXYSSF1807).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzhong Zhan or Hongqun Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Zhan, Y. & Tang, H. Development of CoCrFeNiVAlx High-Entropy Alloys Based on Solid Solution Strengthening. JOM 71, 3473–3480 (2019). https://doi.org/10.1007/s11837-019-03416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03416-9

Navigation