Skip to main content
Log in

A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of CoCrFeNiMox (x = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2) high-entropy alloys were designed to develop a eutectic high-entropy alloy system and to acquire a superfine eutectic structure. The results show that for the CoCrFeNiMox alloys, with the increase of Mo content from 0.2 to 1.2, the microstructures shift from a typical dendrite structure to a hypoeutectic microstructure (x = 0.6), and then to a fully eutectic microstructure (x = 0.8) with a lamellar spacing only 110 nm, and finally culminate in the hypereutectic structure (x = 1.0, x = 1.2). The XRD results show that CoCrFeNiMox alloys have a single FCC phase when x is 0.2 or 0.4. When Mo content is over 0.6, it begins to separate Cr9Mo21Ni20 intermetallic compounds. The hardness of the CoCrFeNiMox alloys is increasing significantly from 172.8 to 763.7 HV with the increase of Mo content. Meanwhile, the fracture strength increased but the ductility decreases. Among these alloys, the CoCrFeNiMo0.6 alloy shows excellent integrated mechanical properties of compressive fracture strength and strain, which are 2051 Mpa and 23%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  Google Scholar 

  3. C. Huang, Y. Zhang, J. Shen, and R. Vilar: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).

    Article  CAS  Google Scholar 

  4. C-J. Tong, M-R. Chen, J-W. Yeh, S-J. Lin, S-K. Chen, T-T. Shun, and S-Y. Chang: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  5. O. Senkov, S. Senkova, C. Woodward, and D. Miracle: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545 (2013).

    Article  CAS  Google Scholar 

  6. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).

    Article  CAS  Google Scholar 

  7. T. Nagase, P.D. Rack, J.H. Noh, and T. Egami: In situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 59, 32 (2015).

    Article  CAS  Google Scholar 

  8. J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang: Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. Mater. Sci. Forum 688, 419 (2011).

    Article  CAS  Google Scholar 

  9. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  10. H. Zhang, Y. Pan, Y. He, and H. Jiao: Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl. Surf. Sci. 257, 2259 (2011).

    Article  CAS  Google Scholar 

  11. L. Wen, H. Kou, J. Li, H. Chang, X. Xue, and L. Zhou: Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics 17, 266 (2009).

    Article  CAS  Google Scholar 

  12. S. Xia, X. Yang, M. Chen, T. Yang, and Y. Zhang: The Al effects of Co-free and V-containing high-entropy alloys. Metals 7, 18 (2017).

    Article  Google Scholar 

  13. S-K. Chen and Y-F. Kao: Near-constant resistivity in 4.2–360 K in a B2 Al2.08CoCrFeNi. AIP Adv. 2, 012111 (2012).

    Article  Google Scholar 

  14. M.E. Glicksman: Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer Science & Business Media, New York, NY, 2010).

    Google Scholar 

  15. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).

    Article  CAS  Google Scholar 

  16. A.K. Mishra, S. Samal, and K. Biswas: Solidification behaviour of Ti–Cu–Fe–Co–Ni high entropy alloys. Trans. Indian Inst. Met. 65, 725 (2012).

    Article  CAS  Google Scholar 

  17. S. Guo, C. Ng, and C.T. Liu: Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J. Alloys Compd. 557, 77 (2013).

    Article  CAS  Google Scholar 

  18. L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li: Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J. Alloys Compd. 649, 585 (2015).

    Article  CAS  Google Scholar 

  19. Y. Tan, J. Li, J. Wang, and H. Kou: Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy. Intermetallics 85, 74 (2017).

    Article  CAS  Google Scholar 

  20. F. He, Z. Wang, X. Shang, C. Leng, J. Li, and J. Wang: Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).

    Article  CAS  Google Scholar 

  21. W.H. Liu, T. Yang, and C.T. Liu: Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 210, 2 (2018).

    Article  CAS  Google Scholar 

  22. X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, and Y. Zhao: Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59 (2017).

    Article  CAS  Google Scholar 

  23. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).

    Article  CAS  Google Scholar 

  24. F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang, and C.T. Liu: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).

    Article  CAS  Google Scholar 

  25. Y. Lu, H. Jiang, S. Guo, T. Wang, Z. Cao, and T. Li: A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017).

    Article  CAS  Google Scholar 

  26. Z. Ding, Q. He, and Y. Yang: Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys. Sci. China: Technol. Sci. 61, 159–167 (2017).

    Article  Google Scholar 

  27. Y. Dong, L. Jiang, H. Jiang, Y. Lu, T. Wang, and T. Li: Effects of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high-entropy alloy. Mater. Des. 82, 91–97 (2015).

    Article  CAS  Google Scholar 

  28. E. ASTM: E9–89a, standard test methods of compression testing of metallic materials at room temperature. In Annual Book of ASTM Standards, Vol. 3 (ASTM International, Philadelphia, PA, 2000), pp. 1–9.

    Google Scholar 

  29. T-T. Shun, L-Y. Chang, and M-H. Shiu: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mater. Charact. 70, 63 (2012).

    Article  CAS  Google Scholar 

  30. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).

    Article  CAS  Google Scholar 

  31. H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao, and T. Li: Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 43–48 (2018).

    Article  CAS  Google Scholar 

  32. L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, and T. Li: Effects of Nb addition on structural evolution and properties of the CoFeNi2V0.5 high-entropy alloy. Appl. Phys. A: Mater. Sci. Process. 119, 291 (2015).

    Article  CAS  Google Scholar 

  33. Z. Wang, Y. Huang, Y. Yang, J. Wang, and C.T. Liu: Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. 94, 28 (2015).

    Article  CAS  Google Scholar 

  34. L. Liu, L.J. He, J.G. Qi, B. Wang, Z.F. Zhao, J. Shang, and Y. Zhang: Effects of Sn element on microstructure and properties of SnxAl2.5FeCoNiCu multi-component alloys. J. Alloys Compd. 654, 327 (2016).

    Article  CAS  Google Scholar 

  35. S. Guo and C.T. Liu: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

  36. A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).

    Article  CAS  Google Scholar 

  37. E.J. Pickering and N.G. Jones: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51601086, 51405215, and 51702143), Liaoning Natural Science Foundation (Grant No. 2015020204), and Doctoral Initiating Project of Liaoning Province Foundation for Natural Sciences, China (Grant No. 201601342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Liu, L., Zhang, Y. et al. A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys. Journal of Materials Research 33, 3258–3265 (2018). https://doi.org/10.1557/jmr.2018.177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.177

Navigation