Skip to main content
Log in

Fascinating Study of the Physical Properties of a Novel Nanometric Delafossite for Biomedical Applications

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A low-cost flash auto-combustion technique was used to prepare Cr-doped Ag nanoparticles at 400°C. By increasing double and half Cr ions to Ag nanoparticles, a fascinating improvement in the physical properties was displayed. X-ray analysis confirmed that the samples were of single-phase spinel structure. Fourier-transform infrared analysis showed the intrinsic cation vibrations of the spinel structure. The morphology confirmed that all the samples were in the nanoscale range. The nanoparticle AgCrO2 had saturation magnetization (Ms) nearly 1.09-fold larger than that of Ag0.5Cr2.5O4. However, the coercivity (Hc) of the Ag0.5Cr2.5O4 nanoparticles increased nearly 1.3-fold more than that of AgCrO2. The antimicrobial activity of both samples was studied and demonstrated that nanoparticle Ag0.5Cr2.5O4 is a novel material that can be added to various drugs. Consequently, the improvement of AgCrO2 to Ag0.5Cr2.5O4 nanoparticles with a superparamagnetic nature makes them suitable to be used in biomedical applications, especially antibacterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.Y. Liau, D.C. Read, W.J. Pugh, J.R. Furr, and A.D. Russell, Lett. Appl. Microbiol. 25, 279–283 (1997).

    Article  Google Scholar 

  2. K. Nomiya, A. Yoshizawa, K. Tsukagoshi, N.C. Kasuga, S. Hirakawa, and J. Watanabe, J. Inorg. Biochem. 98, 46–60 (2004).

    Article  Google Scholar 

  3. A. Gupta and S. Silver, Nat. Biotechnol. 16, 888 (1998).

    Article  Google Scholar 

  4. J.J. Hwang and T.W. Ma, Mater. Chem. Phys. 136, 613–623 (2012).

    Article  Google Scholar 

  5. S. Honary, K. Ghajar, P. Khazaeli, and P. Schalchian, Trop. J. Pharm. Res. 10, 69–74 (2011).

    Article  Google Scholar 

  6. N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, and R. Hazan, J. Evid. Based Complement. Altern. Med. 2015, 246012 (2015). https://doi.org/10.1155/2015/246012.

    Google Scholar 

  7. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Mater. Sci. Mater. Electron. 29, 11699–11711 (2018).

    Article  Google Scholar 

  8. A.W. Bauer, W.M. Kirby, C. Sherris, and M. Turck, Am. J. Clin. Pathol. 45, 493–496 (1966).

    Article  Google Scholar 

  9. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Supercond. Novel Magn. 31, 3691–3703 (2018).

    Article  Google Scholar 

  10. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Alloys Compd. 726, 1106–1118 (2017).

    Article  Google Scholar 

  11. S. Kumar, M. Miclau, and C. Martin, Chem. Mater. 25, 2083–2088 (2013). https://doi.org/10.1021/cm400420e.

    Article  Google Scholar 

  12. W.W. Milligan, S.A. Hackney, M. Ke, and E.C. Aifantis, Nanostruct. Mater. 2, 267 (1993).

    Article  Google Scholar 

  13. H.N. Abdelhamid and W. Hui-Fen, Mater. Sci. Eng. C 45, 438–445 (2014). https://doi.org/10.1016/j.msec.2014.08.071.

    Article  Google Scholar 

  14. K.H. Mahmoud, Spectrochim. Acta Part A 138, 434–440 (2015).

    Article  Google Scholar 

  15. A.A.H. El-Bassuony, J. Mater. Sci. Mater. Electron. 29, 3259–3269 (2018).

    Article  Google Scholar 

  16. A.A. El-Bassuony, J. Supercond. Novel Magn. 31, 2829–2840 (2018).

    Article  Google Scholar 

  17. H.K. Abdelsalam, J. Supercond. Novel Magn. 8, 8–9 (2018). https://doi.org/10.1007/s10948-018-4689-5.

    Google Scholar 

  18. A.A. El-Bassuony, J. Mater. Sci. Mater. Electron. 28, 14489–14498 (2017).

    Article  Google Scholar 

  19. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Mater. Sci. Mater. Electron. 29, 5401–5412 (2018).

    Article  Google Scholar 

  20. A.A.H. El-Bassuony and H.K. Abdelsalam, J. Supercond. Novel Magn. 31, 1539–1544 (2018).

    Article  Google Scholar 

  21. L. Li, L. Peng, Y. Li, and X. Zhu, J. Magn. Magn. Mater. 324, 60 (2012).

    Article  Google Scholar 

  22. G.A. El-shobaky, A.M. Turky, N.Y. Mostafa, and S.K. Mohamed, J. Alloys Compd. 493, 415 (2010).

    Article  Google Scholar 

  23. O. Caltun, I. Dumitru, M. Feder, N. Lupu, and H. Chiriac, J. Magn. Magn. Mater. 320, e869–e873 (2008).

    Article  Google Scholar 

  24. Z. Huang, X. Jiang, D. Guo, and N. Gu, J. Nanosci. Nanotechnol. 11, 9395–9408 (2011).

    Article  Google Scholar 

  25. S.H. Kim, H.S. Lee, D.S. Ryu, S.J. Choi, and D.S. Lee, J. Microbiol. Biotechnol. 39, 77–85 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa. A. H. El-Bassuony.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bassuony, A.A.H., Abdelsalam, H.K. Fascinating Study of the Physical Properties of a Novel Nanometric Delafossite for Biomedical Applications. JOM 71, 1866–1873 (2019). https://doi.org/10.1007/s11837-019-03415-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03415-w

Navigation