Skip to main content
Log in

The Combustion Synthesis of Ag-Doped MnCo2O4 Nanoparticles for Supercapacitor Applications

  • Energy Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Spinel oxide nanoparticles (NPs) of MnCo2O4 (MCO) and silver-doped MCO were synthesized using the combustion method. The prepared NPs were characterized via x-ray diffraction (XRD) to determine the crystalline structures. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied to demonstrate the morphology, shape, and size of the achieved NPs. In addition, the effect of Ag (10%) as conductor and sodium dodecyl sulfate (SDS) as surfactant on the prepared materials was investigated. The XRD results show that Ag doping of MnCo2O4 does not change the crystal structure. According to the SEM studies, the addition of SDS prevented NP agglomeration according. The synthesized nanomaterials could be used for supercapacitor application with superior performances. Among the all prepared nanomaterials, the Ag-doped MnCo2O4 NPs prepared in the presence of SDS exhibited the best pseudo-capacitive performance possessing the highest specific capacitances of 942 F g−1 at 1 A g−1 and 590 F g−1 at 20 A g−1 with excellent cycling stability (93.7% retention rate after 1000 cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Zhang, H. Xuan, Y. Xu, B. Guo, H. Li, L. Kang, P. Han, D. Wang, and Y. Du, Electrochim. Acta 206, 278 (2016).

    Article  Google Scholar 

  2. Y. Xu, X. Wang, C. An, Y. Wang, L. Jiao, and H. Yuan, J. Mater. Chem. A 2, 16480 (2014).

    Article  Google Scholar 

  3. S.-H. Yu, X. Guo, D. Ling, D.Y. Chung, A. Jin, M. Shokouhimehr, T. Hyeon, and Y.-E. Sung, RSC Adv. 4, 37365 (2014).

    Article  Google Scholar 

  4. S.-H. Yu, M. Shokouhimehr, T. Hyeon, and Y.-E. Sung, ECS Electrochem. Lett. 2, A39 (2013).

    Article  Google Scholar 

  5. M. Shokouhimehr, S.-H. Yu, D.-C. Lee, D. Ling, T. Hyeon, and Y.-E. Sung, Nanosci. Nanotechnol. Lett. 5, 770 (2013).

    Article  Google Scholar 

  6. S.-H. Yu, M. Park, H.S. Kim, A. Jin, M. Shokouhimehr, T.-Y. Ahn, Y.-W. Kim, T. Hyeon, and Y.-E. Sung, RSC Adv. 4, 12087 (2014).

    Article  Google Scholar 

  7. L. Duan, F. Gao, L. Wang, S. Jin, and H. Wu, J. Adv. Ceram. 2, 266 (2013).

    Article  Google Scholar 

  8. H.S. Han, J.S. Lee, J. Lim, K.R. Park, K.M. Kim, J.H. Ryu, S. Yeo, J. Forrester, and S. Mhin, Ceram. Int. 42, 17168 (2016).

    Article  Google Scholar 

  9. D. Zhang, H. Yan, Y. Lu, K. Qiu, C. Wang, Y. Zhang, X. Liu, J. Luo, and Y. Luo, Dalt. Trans. 43, 15887 (2014).

    Article  Google Scholar 

  10. L. Li, Y.Q. Zhang, X.Y. Liu, S.J. Shi, X.Y. Zhao, H. Zhang, X. Ge, G.F. Cai, C.D. Gu, and X.L. Wang, Electrochim. Acta 116, 467 (2014).

    Article  Google Scholar 

  11. P. Hao, Z. Zhao, L. Li, C.-C. Tuan, H. Li, Y. Sang, H. Jiang, C.P. Wong, and H. Liu, Nanoscale 7, 14401 (2015).

    Article  Google Scholar 

  12. P. Umadevi and C.L. Nagendra, Sens. Actuators A Phys. 96, 114 (2002).

    Article  Google Scholar 

  13. T. Nissinen, T. Valo, M. Gasik, J. Rantanen, and M. Lampinen, J. Power Sour. 106, 109 (2002).

    Article  Google Scholar 

  14. M. Vakiv, O. Shpotyuk, O. Mrooz, and I. Hadzaman, J. Eur. Ceram. Soc. 21, 1783 (2001).

    Article  Google Scholar 

  15. P.A. Joy and S.K. Date, J. Magn. Magn. Mater. 210, 31 (2000).

    Article  Google Scholar 

  16. P.A. Joy and S.K. Date, J. Magn. Magn. Mater. 218, 229 (2000).

    Article  Google Scholar 

  17. F.M.M. Borges, D.M.A. Melo, M.S.A. Câmara, A.E. Martinelli, J.M. Soares, J.H. de Araújo, and F.A.O. Cabral, J. Magn. Magn. Mater. 302, 273 (2006).

    Article  Google Scholar 

  18. P. Lesani, A. Babaei, A. Ataie, and E. Mostafavi, Int. J. Hydrogen Energy 41, 20640 (2016).

    Article  Google Scholar 

  19. N. Padmanathan and S. Selladurai, Ionics (Kiel). 20, 479 (2014).

    Article  Google Scholar 

  20. A. Das Sharma, J. Mukhopadhyay, and R.N. Basu, ECS Trans. 35, 2509 (2011).

    Article  Google Scholar 

  21. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015).

    Article  Google Scholar 

  22. P. Lavela, J.L. Tirado, and C. Vidal-Abarca, Electrochim. Acta 52, 7986 (2007).

    Article  Google Scholar 

  23. E. Rios, G. Poillerat, J.F. Koenig, J.L. Gautier, and P. Chartier, Thin Solid Films 264, 18 (1995).

    Article  Google Scholar 

  24. J.-J. Choi, J. Ryu, B.-D. Hahn, W.-H. Yoon, B.-K. Lee, and D.-S. Park, J. Mater. Sci. 44, 843 (2009).

    Article  Google Scholar 

  25. R. Tholkappiyan, A.N. Naveen, S. Sumithra, and K. Vishista, J. Mater. Sci. 50, 5833 (2015).

    Article  Google Scholar 

  26. A. Sutka and G. Mezinskis, Front. Mater. Sci. 6, 128 (2012).

    Article  Google Scholar 

  27. C. Hwang, J. Tsai, T. Huang, and C. Peng, J. Solid State Chem. 178, 382 (2005).

    Article  Google Scholar 

  28. M.J. De Andrade, M.D. Lima, R. Bonadiman, and C.P. Bergmann, Mater. Res. Bull. 41, 2070 (2006).

    Article  Google Scholar 

  29. M.D. Lima, R. Bonadimann, M.J. de Andrade, J.C. Toniolo, and C.P. Bergmann, J. Eur. Ceram. Soc. 26, 1213 (2006).

    Article  Google Scholar 

  30. H. Xia, C. Hong, X. Shi, B. Li, G. Yuan, Q. Yao, and J. Xie, J. Mater. Chem. A 3, 1216 (2015).

    Article  Google Scholar 

  31. X.M. Wu, Z.Q. He, S. Chen, M.Y. Ma, Z.B. Xiao, and J. Ben Liu, Mater. Lett. 60, 2497 (2006).

    Article  Google Scholar 

  32. Y. Wang and I. Zhitomirsky, Mater. Lett. 65, 1759 (2011).

    Article  Google Scholar 

  33. M. Sammalkorpi, M. Karttunen, and M. Haataja, J. Phys. Chem. B 113, 5863 (2009).

    Article  Google Scholar 

  34. M. Vadivel, R.R. Babu, M. Arivanandhan, K. Ramamurthi, and Y. Hayakawa, RSC Adv. 5, 27060 (2015).

    Article  Google Scholar 

  35. N.H.M. Safari, A.R. Hassan, C.W.I.C.W. Takwa, and S. Rozali, Period. Polytech. Chem. Eng. 63, 27 (2017).

    Article  Google Scholar 

  36. T. Liu, F. Zhang, Y. Song, and Y. Li, J. Mater. Chem. A 5, 17705 (2017).

    Article  Google Scholar 

  37. A.S. Zuruzi, M.H. Nurmawati, Y.H. Yeo, S. Wu, P. Chee Hoong Lai, and Z. Chen, RSC Adv. 3, 19971 (2013).

    Article  Google Scholar 

  38. R. Nasser, W.B.H. Othmen, H. Elhouichet, and M. Férid, Appl. Surf. Sci. 393, 486 (2017).

    Article  Google Scholar 

  39. H. Che, A. Liu, J. Mu, C. Wu, and X. Zhang, Ceram. Int. 42, 2416 (2016).

    Article  Google Scholar 

  40. M. Kazazi and R. Karami, Solid State Ion. 308, 8 (2017).

    Article  Google Scholar 

  41. M. Kazazi, Curr. Appl. Phys. 17, 240 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of this work by Malayer University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Mazinani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazinani, B., Kazazi, M., Mobarhan, G. et al. The Combustion Synthesis of Ag-Doped MnCo2O4 Nanoparticles for Supercapacitor Applications. JOM 71, 1499–1506 (2019). https://doi.org/10.1007/s11837-019-03387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03387-x

Navigation