Skip to main content
Log in

Complementary Thermal Analysis Protocols for the Investigation of the Tempering Reactions of a Carbide-Free Bainitic Steel

  • Advanced High-Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Austenite corresponds to a major constituent of carbide-free bainitic steels required to obtain enhanced deformability assisted by transformation-induced plasticity. It is, therefore, of foremost importance to retain sufficient amounts during processing and heat treatment. In order to analyze and describe the tempering reactions occurring during heating a material consisting of bainitic ferrite and C-enriched austenite, a complementary thermal analysis protocol has been applied using dilatometry and differential scanning calorimetry. Thereby, kinetic parameters were determined and interpreted in the view of literature and supporting calculations. Austenite decomposition was observed using both methods in the temperature regime of about 500°C. The reaction’s signature was revealed by calculation of the transformation enthalpy. Dilatometry suggests that decomposition of highly C-enriched austenite predominates at lower temperatures and, on further heating, regions with lower C concentrations follow. Additionally, dilatometry revealed C redistribution in bainitic ferrite already occurring at temperatures between 230°C and 330°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a i, b θ, c θ :

Lattice constants (Å)

B i :

High-temperature limit of thermal expansion coefficient (K−1)

C :

Empirical constant

f i, f j :

Phase fraction (mass or molar) (m.%, mol.%)

H j :

Molar enthalpy (J/mol)

k 0 :

Preexponential factor of rate constant (s−1)

l 0 :

Original length (µm)

M s :

Martensite start temperature (°C)

n i :

Avrami exponent

n j :

Molar quantity (mol)

Q a i :

Actvation energy (kJ/mol)

R :

Ideal gas constant (JK−1/mol)

T :

Temperature (K, °C)

t :

Time (s)

T eq :

Equilibrium transformation temperature (°C)

T p i :

Peak temperature (°C)

w i :

Concentration (m.%)

α i :

Conversion degree

β :

Heating rate (°C/s)

l :

Change in length (µm)

θ D, i :

Debye temperature (K)

κ i :

Empirical constant (J/s)

σ :

Standard deviation

References

  1. O. Bouaziz, H. Zurob, and M. Huang, Steel Res. Int. 84, 937 (2013).

    Google Scholar 

  2. E. De Moor, and J. G. Speer, in Automot. Steels Des. Metall. Process. Appl., ed. by R. Rana, and S.B. Singh (Elsevier, Amsterdam, 2016), pp. 289–316.

  3. L. Liu, B. He, and M.X. Huang, Adv. Eng. Mater. 20, 1701083 (2018).

    Article  Google Scholar 

  4. P.J. Jacques, Curr. Opin. Solid State Mater. Sci. 8, 259 (2004).

    Article  Google Scholar 

  5. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, and J. Cornide, J. Alloys Compd. 577, S626 (2013).

    Article  Google Scholar 

  6. C. Garcia-Mateo, J.A. Jimenez, H.-W. Yen, M.K. Miller, L. Morales-Rivas, M. Kuntz, S.P. Ringer, J.-R. Yang, and F.G. Caballero, Acta Mater. 91, 162 (2015).

    Article  Google Scholar 

  7. M. Hillert, L. Höglund, and J. Ågren, Acta Metall. Mater. 41, 1951 (1993).

    Article  Google Scholar 

  8. G. Ghosh and G.B. Olson, Acta Mater. 50, 2099 (2002).

    Article  Google Scholar 

  9. E. Kozeschnik and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 24, 343 (2008).

    Article  Google Scholar 

  10. M.J. Peet, S.S. Babu, M.K. Miller, and H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 48, 3410 (2017).

    Article  Google Scholar 

  11. K. Zhu, C. Mager, and M. Huang, J. Mater. Sci. Technol. 32, 1475 (2017).

    Article  Google Scholar 

  12. H.K.D.H. Bhadeshia and D.V. Edmonds, Metall. Trans. A 10, 895 (1979).

    Article  Google Scholar 

  13. H. Chen and S. van der Zwaag, JOM 68, 1320 (2016).

    Article  Google Scholar 

  14. L. Lan and X. Kong, JOM 70, 666 (2018).

    Article  Google Scholar 

  15. A.S. Zav’yalov and M.I. Senchenko, Met. Sci. Heat Treat. Met. 1, 3 (1961).

    Article  Google Scholar 

  16. G.R. Speich and W.C. Leslie, Metall. Trans. 3, 1043 (1972).

    Article  Google Scholar 

  17. R.M. Horn and R.O. Ritchi, Metall. Trans. A 9, 1039 (1978).

    Article  Google Scholar 

  18. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, C. Capdevila, and S.S. Babu, Acta Mater. 56, 188 (2008).

    Article  Google Scholar 

  19. A. Saha Podder and H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 527, 2121 (2010).

    Article  Google Scholar 

  20. M.A. Santajuana, R. Rementeria, M. Kuntz, J.A. Jimenez, F.G. Caballero, and C. Garcia-Mateo, Metall. Mater. Trans. A 49, 2026 (2018).

    Article  Google Scholar 

  21. H.K.D.H. Bhadeshia, Bainite in Steels: Theory and Practice, 3rd ed. (Leeds: Maney, 2015).

    Google Scholar 

  22. S. Reisinger, G. Ressel, S. Eck, and S. Marsoner, Micron 99, 67 (2017).

    Article  Google Scholar 

  23. J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens, Metall. Mater. Trans. A 33, 2573 (2002).

    Article  Google Scholar 

  24. C. Hofer, F. Winkelhofer, H. Clemens, and S. Primig, Mater. Sci. Eng. A 664, 236 (2016).

    Article  Google Scholar 

  25. S.M.C. van Bohemen, Scr. Mater. 69, 315 (2013).

    Article  Google Scholar 

  26. S.M.C. van Bohemen, Scr. Mater. 75, 22 (2014).

    Article  Google Scholar 

  27. R. Ruhl and M. Cohen, Trans. Met. Soc. AIME 245, 241 (1969).

    Google Scholar 

  28. S.Y.P. Allain, S. Gaudez, G. Geandier, J.C. Hell, M. Gouné, F. Danoix, M. Soler, S. Aoued, and A. Poulon-Quintin, Mater. Sci. Eng. A 710, 245 (2018).

    Article  Google Scholar 

  29. A. Devaraj, Z. Xu, F. Abu-Farha, X. Sun, and L.G. Hector, JOM 70, 1752 (2018).

    Article  Google Scholar 

  30. A.W. Coats and J.P. Redfern, Nature 201, 68 (1964).

    Article  Google Scholar 

  31. K. Matusita, T. Komatsu, and R. Yokota, J. Mater. Sci. 19, 291 (1984).

    Article  Google Scholar 

  32. J. Farjas and P. Roura, Acta Mater. 54, 5573 (2006).

    Article  Google Scholar 

  33. E. De Moor, C. Föjer, J. Penning, A.J. Clarke, and J.G. Speer, Phys. Rev. B 82, 1 (2010).

    Google Scholar 

  34. J.A.V. Leiva, E.V. Morales, E. Villar-Cociña, C.A. Donis, and I. De, J. Mater. Sci. 45, 418 (2010).

    Article  Google Scholar 

  35. S. Primig and H. Leitner, Thermochim. Acta 526, 111 (2011).

    Article  Google Scholar 

  36. H.E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  37. G.W.H. Höhne, W.F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry, 2nd ed. (Berlin: Springer, 2003).

    Book  Google Scholar 

  38. E.J. Seo, L. Cho, and B.C. De Cooman, Acta Mater. 107, 354 (2016).

    Article  Google Scholar 

  39. P.V. Morra, A.J. Böttger, and E.J. Mittemeijer, J. Therm. Anal. Calorim. 64, 905 (2001).

    Article  Google Scholar 

  40. Y. Tomita, J. Mater. Sci. 24, 731 (1989).

    Article  Google Scholar 

  41. M. Onink, F.D. Tichelaar, C.M. Brakman, E.J. Mittemeijer, and S. van der Zwaag, Z. Met. 87, 24 (1996).

    Google Scholar 

  42. F.G. Caballero, C. García-Mateo, and C. García de Andrés, Mater. Trans. 46, 581 (2005).

    Article  Google Scholar 

  43. S.J. Lee and Y.K. Lee, Scr. Mater. 52, 973 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support under the scope of the COMET program within the K2 Center “Integrated Computational Material, Process and Product Engineering (IC-MPPE)” (Project No 859480). This program is supported by the Austrian Federal Ministries for Transport, Innovation and Technology (BMVIT) and for Digital and Economic Affairs (BMDW), represented by the Austrian research funding association (FFG), and the federal states of Styria, Upper Austria and Tyrol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, T., Lukas, M., Haslberger, P. et al. Complementary Thermal Analysis Protocols for the Investigation of the Tempering Reactions of a Carbide-Free Bainitic Steel. JOM 71, 1357–1365 (2019). https://doi.org/10.1007/s11837-019-03331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03331-z

Navigation