Skip to main content

Advertisement

Log in

Response of Hydrogen Desorption and Hydrogen Embrittlement to Precipitation of Nanometer-Sized Copper in Tempered Martensitic Low-Carbon Steel

  • Advanced High-Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work is aimed at studying the hydrogen–copper precipitate interaction in a martensitic steel. Analysis of hydrogen thermal desorption revealed that precipitation of copper particles enhances the hydrogen trapping capability of tempered copper-containing martensitic steel. Moreover, precipitation of copper could make hydrogen retain longer in the steel, indicating a retarded diffusion of hydrogen. Copper precipitates as a hydrogen trapping site were observed to preserve an activation energy of 35.6 kJ mol−1 by Choo-and-Lee method after release for 4 h at room temperature. This value is higher than the activation energy of dislocation. Moreover, tempered steel with copper particles displayed better resistance to hydrogen embrittlement in notched, slow-strain-rate tensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.H. Johnson, Proc. Roy. Soc. Lond. 23, 168 (1874).

    Google Scholar 

  2. E.M.K. Hillier and M.J. Robinson, Corros. Sci. 46, 715 (2004).

    Article  Google Scholar 

  3. G.W. Hollenberg, E.P. Simonen, G. Kalinin, and A. Terlain, Fusion Eng. Des. 28, 190 (1995).

    Article  Google Scholar 

  4. R.E. Melchers, Corros. Sci. 47, 2391 (2005).

    Article  Google Scholar 

  5. G. Lovicu, M. Bottazzi, F. D’Aiuto, M. De Sanctis, A. Dimatteo, C. Santus, and R. Valentini, Metall. Mater. Trans. A 43, 4075 (2012).

    Article  Google Scholar 

  6. A. Turnbull, Int. J. Hydrog. Energy 40, 16961 (2015).

    Article  Google Scholar 

  7. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson, Acta Mater. 60, 2739 (2012).

    Article  Google Scholar 

  8. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson, Acta Mater. 59, 1601 (2011).

    Article  Google Scholar 

  9. H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 12 (1994).

    Article  Google Scholar 

  10. D.S. Shih, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 36, 111 (1988).

    Article  Google Scholar 

  11. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, J. Mech. Phys. Solids 112, 403 (2018).

    Article  Google Scholar 

  12. A.A. Barani, D. Ponge, and D. Raabe, Steel Res. Int. 77, 704 (2006).

    Article  Google Scholar 

  13. O. Bouaziz, H. Zurob, and M. Huang, Steel Res. Int. 84, 937 (2013).

    Google Scholar 

  14. B.D. Craig and G. Krauss, Metall. Trans. A 11, 1799 (1980).

    Article  Google Scholar 

  15. F. HajyAkbary, J. Sietsma, A.J. Bottger, and M.J. Santofimia, Mater. Sci. Eng. A 639, 208 (2015).

    Article  Google Scholar 

  16. G. Krauss, Metall. Mater. Trans. A 32, 861 (2001).

    Article  Google Scholar 

  17. F.-G. Wei and K. Tsuzaki, Scr. Mater. 52, 467 (2005).

    Article  Google Scholar 

  18. X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang, and X. Jin, Scr. Mater. 97, 21 (2015).

    Article  Google Scholar 

  19. H. Asahi, D. Hirakami, and S. Yamasaki, ISIJ Int. 43, 7 (2003).

    Article  Google Scholar 

  20. J. Lee, T. Lee, Y.J. Kwon, D.-J. Mun, J.-Y. Yoo, and C.S. Lee, Met. Mater. Int. 22, 364 (2016).

    Article  Google Scholar 

  21. A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, and I.M. Robertson, Acta Mater. 74, 244 (2014).

    Article  Google Scholar 

  22. M. Mujahid, ASM Int. 7, 11 (1998).

    Google Scholar 

  23. S. Takaki, M. Fujioka, S. Aihara, Y. Nagataki, T. Yamashita, N. Sano, Y. Adachi, M. Nomura, and H. Yaguchi, Mater. Trans. 45, 2239 (2004).

    Article  Google Scholar 

  24. S. Komazaki, A. Koyama, and T. Misawa, Mater. Trans. 43, 2213 (2002).

    Article  Google Scholar 

  25. E.J. Song, D.-W. Suh, and H.K.D.H. Bhadeshia, Comput. Mater. Sci. 79, 36 (2013).

    Article  Google Scholar 

  26. M. Wang, E. Akiyama, and K. Tsuzaki, Mater. Sci. Eng. A 398, 37 (2005).

    Article  Google Scholar 

  27. N. Maruyama, M. Sugiyama, T. Hara, and H. Tamehiro, Mater. Trans. 40, 268 (1999).

    Article  Google Scholar 

  28. G.R. Speich and R.A. Oriani, Trans. Metall. Soc. AIME 233, 623 (1965).

    Google Scholar 

  29. H.E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  30. H. Hagi and Y. Hayashi, Trans. Jpn. Inst. Met. 28, 368 (1987).

    Article  Google Scholar 

  31. W.Y. Choo and J.Y. Lee, Metall. Trans. A A 13, 135 (1982).

    Article  Google Scholar 

  32. J.S. Kim, Y.H. Lee, D.L. Lee, K.T. Park, and C.S. Lee, Mater. Sci. Eng. A 505, 105 (2009).

    Article  Google Scholar 

  33. D.P. Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Mater. Sci. Eng. A 551, 50 (2012).

    Article  Google Scholar 

  34. R.L.S. Thomas, D.M. Li, R.R. Gangloff, and J.R. Scully, Metall. Mater. Trans. A 33, 1991 (2002).

    Article  Google Scholar 

  35. G.M. Pressouyre, Metall. Trans. A 10, 1571 (1979).

    Article  Google Scholar 

  36. K.-I. Ebihara, T. Suzudo, H. Kaburaki, K. Takai, and S. Takebayashi, ISIJ Int. 47, 1131 (2007).

    Article  Google Scholar 

  37. H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016).

    Article  Google Scholar 

  38. F.G. Wei and K. Tsuzaki, Metall. Mater. Trans. A 37A, 331 (2006).

    Article  Google Scholar 

  39. H.M. Lee, Metall. Trans. A 7, 431 (1976).

    Article  Google Scholar 

  40. Y. Ebisuzaki and M. O’Keeffe, Progr. Solid State Chem. 4, 187 (1967).

    Article  Google Scholar 

  41. H. Mangnusson and K. Frisk, J. Phase Equilib. 38, 5 (2017).

    Article  Google Scholar 

  42. Y.-S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, and M.P. Moody, Science 355, 1196 (2017).

    Article  Google Scholar 

  43. T. Depover and K. Verbeken, Int. J. Hydrog. Energy 43, 3050 (2018).

    Article  Google Scholar 

  44. H.-W. Yen, M.-H. Chiang, Y.-C. Lin, D. Chen, C.-Y. Huang, and H.-C. Lin, Metals 7, 253 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Science and Technology of the Republic of China for providing financial support under Contract MOST-106-2628-E-002-015-MY3 and Contract MOST-106-2622-8-006-001. The authors especially thank Dr. Steve Woei Ooi at the Department of Materials Science and Metallurgy, University of Cambridge, for his technical support in TDA experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Wei Yen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Chen, D., Chiang, MH. et al. Response of Hydrogen Desorption and Hydrogen Embrittlement to Precipitation of Nanometer-Sized Copper in Tempered Martensitic Low-Carbon Steel. JOM 71, 1349–1356 (2019). https://doi.org/10.1007/s11837-019-03330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03330-0

Navigation