Skip to main content
Log in

Current Status of Titanium Recycling and Related Technologies

  • Rare Metal Recovery from Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The major resource for recycling Ti is currently in-house Ti scrap generated in smelting and fabrication processes instead of postconsumer Ti products, and the actual recycling rate including cascade recycling in the smelting and fabrication industry is high. The major impurities in Ti scrap are O and Fe. High-grade Ti scrap with low O and Fe concentrations is remelted to obtain Ti and its alloys. On the other hand, low-grade Ti scrap with high O and Fe concentrations is used as ferrotitanium for the steel industry. However, if demand for Ti drastically increases, the amount of low-grade Ti scrap generated would exceed the demand for ferrotitanium. Before this happens, technologies for anti-contamination or for efficient O and Fe removal must be developed for efficient utilization of Ti. Herein, the current status of Ti scrap generation and its recycling flow are reviewed. New developments in Ti recycling technology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Industrial Rare Metal, Annual Review 2017, (Tokyo, Japan: Arumu Publishing, 2017), pp. 70–75, 86. (in Japanese).

  2. R.L. Rundnick, The Crust (Oxford, UK: Elsevier Pergamon, 2004), pp. 1–64.

    Google Scholar 

  3. F.H. Froes, Titanium: Physical Metallurgy Processing and Applications (ASM International, Materials Park, OH, 2015), pp. 9–14, 331.

  4. Mineral resource material flow 2017 (Tokyo, Japan: Japan Oil, Gas, Metals National Corporation, 2017). http://mric.jogmec.go.jp/wp-content/ebook/201803/5ab321a5/material_flow2017.pdf. Accessed 1 Apr 2018.

  5. W. Kroll, Trans. Electrochem. Soc. 78, 35 (1940).

    Article  Google Scholar 

  6. O. Takeda, T. Uda, and T.H. Okabe, Treatise on Process Metallurgy, vol. 3 (London, UK: Elsevier, 2013), Chap. 2.9, pp. 995−1069.

  7. F. Habashi (ed.), Handbook of Extractive Metallurgy, vol. 2 (Weinheim, Germany: VCH VerlagsgesellschaftmbH, 1997), pp. 1129−1180.

  8. Home page of Toho Titanium Co., Ltd. http://www.toho-titanium.co.jp. Accessed 1 Apr 2018.

  9. Y. Marui, T. Kinoshita, and K. Takahashi, Honda R&D Tech. Rev. 14, 149 (2002).

    Google Scholar 

  10. T. Suzuki and T. Kaneko, The Latest Technological Trend of Rare Metals, (Tokyo, Japan: CMC Publishing, 2012), Chap. 6.4, pp. 117−127. (in Japanese).

  11. Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Mater. Trans. 56, 1 (2015).

    Article  Google Scholar 

  12. Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Proceedings of Ti-2015: The 13th World Conference on Titanium, (August 16–20, 2015, San Diego, USA, 2015), pp. 165−170.

  13. American Society for Testing and Materials, Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate, B26506b, (West Conshohocken, PA: ASTM International, 2006), Total 10 pages.

  14. E. Roegner, Innovation in the Era of Delivery, Proceedings of Titanium USA 2016 (Sep. 25–28, 2016, Scottsdale, AZ, USA), Total 19 pages.

  15. H. Hira, J. Jpn. Inst. Light Met. 65, 426 (2015).

    Article  Google Scholar 

  16. W. Leach, Titanium Demand and Trends in the Airframe Market, Proceedings of Titanium 2015 (Oct. 4–7, 2015, Orlando, FL, USA), Total 17 pages.

  17. Provided by Mr. Kotaro Watanabe.

  18. R. Duflos, Titanium Aerospace Demand & Integrated Supply Chain, Proceedings of TitaniumSA 2016 (Sep. 25–28, 2016, Scottsdale, AZ, USA), Total 14 pages.

  19. Customs statistics in Japan, Ministry of Finance, Japan (December 2016).

  20. Mineral Industry Surveys 2017 (Reston, VA: US Geological Survey, 2017).

  21. Statistical Review 20122016 (Northglenn, CO: International Titanium Association, 2017).

  22. T. Suzuki, Titanium Jpn. 57, 21 (2009).

    Google Scholar 

  23. T. Ishigami, Materia Jpn. 33, 55 (1994).

    Article  Google Scholar 

  24. K. Ono and S. Miyazaki, J. Jpn. Inst. Met. 49, 871 (1985).

    Article  Google Scholar 

  25. R.L. Fisher, US Patent No. 4923531A (1990).

  26. R.L. Fisher, US Patent No. 5022935 (1991).

  27. R.L. Fisher and S.R. Seagle, US Patent No. 5211775 A (1993).

  28. R.L. Fisher and S.R. Seagle, DOSS, An Industrial Process for Removing Oxygen From Titanium Turnings Scrap, Titanium Science and Technology, ed. by F.H. Froes and I. Caplan. The Minerals, Metals & Materials Society, vol. 3 (Proceedings of the 7th World Conference on Titanium (1992), 1993), pp. 2265−2272.

  29. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono, Mater. Trans. JIM 32, 485 (1991).

    Article  Google Scholar 

  30. J.-M. Oh, B.-K. Lee, C.-Y. Suh, S.-W. Cho, and J.-W. Lim, Powder Metall. 55, 402 (2012).

    Article  Google Scholar 

  31. J.-M. Oh, H. Kwon, W. Kim, and J.-Won Lim, Thin Solid Films, 551, 98 (2014).

  32. J.-M. Oh, I.-H. Choi, C.-Y. Suh, H. Kwon, J.-W. Lim, and K.-M. Roh, Met. Mater. Int. 22, 488 (2016).

    Article  Google Scholar 

  33. S.-J. Kim, J.-M. Oh, and J.-W. Lim, Met. Mater. Int. 22, 658 (2016).

    Article  Google Scholar 

  34. T.H. Okabe, R. Suzuki, T. Oishi, and K. Ono, Tetsu-to-Hagane 77, 93 (1991).

    Article  Google Scholar 

  35. T.H. Okabe, T. Oishi, and K. Ono, J. Alloys Compd. 184, 43 (1992).

    Article  Google Scholar 

  36. T.H. Okabe, T. Oishi, and K. Ono, Metall. Trans. B 23B, 583 (1992).

    Article  Google Scholar 

  37. Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, T. Zhang, and M. Free, J. Mater. Sci. 52, 4120 (2017).

    Article  Google Scholar 

  38. T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono, Metall. Trans. B 24B, 449 (1993).

    Article  Google Scholar 

  39. M. Nakamura, T.H. Okabe, T. Oishi, and K. Ono, in Proc. Int. Symp. Molten Salt Chem. Technol., (1993), pp. 529−540.

  40. Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Metall. Mater. Trans. B 47B, 3395 (2016).

    Google Scholar 

  41. T.H. Okabe, Y. Hamanaka, and Y. Taninouchi, Faraday Discuss. 190, 109 (2016).

    Article  Google Scholar 

  42. G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature 407, 361 (2000).

    Article  Google Scholar 

  43. G.Z. Chen, D.J. Fray, and T.W. Farthing, Metall. Trans. B 32B, 1041 (2001).

    Article  Google Scholar 

  44. G.Z. Chen, D.J. Fray, and T.W. Farthing, US Patent No. 2004/0159559 A1 (2004).

  45. D.J. Fray, JOM 53, 26 (2001).

    Article  Google Scholar 

  46. K.S. Mohandas and D.J. Fray, Trans. Indian Inst. Met. 57, 579 (2004).

    Google Scholar 

  47. P.K. Tripathy, M. Gauthier, and D.J. Fray, Metall. Trans. B 38B, 893 (2007).

    Article  Google Scholar 

  48. K. Ono and R.O. Suzuki, JOM 54, 59 (2002).

    Article  Google Scholar 

  49. R.O. Suzuki and S. Inoue, Metall. Trans. B 34B, 277 (2003).

    Article  Google Scholar 

  50. R.O. Suzuki, K. Ono, and K. Teranuma, Metall. Trans. B 34B, 287 (2003).

    Article  Google Scholar 

  51. R.O. Suzuki and S. Fukui, Mater. Trans. 45, 1665 (2004).

    Article  Google Scholar 

  52. R.O. Suzuki, J. Phys. Chem. Solids 66, 461 (2005).

    Article  Google Scholar 

  53. R.O. Suzuki, JOM 59, 68 (2007).

    Article  Google Scholar 

  54. Z.Z. Fang, S. Middlemas, J. Guo, and P. Fan, J. Am. Chem. Soc. 135, 18248 (2013).

    Article  Google Scholar 

  55. Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T.Y. Zhang, P. Sun, M.L. Free, and J. Guo, Chem. Eng. J. 286, 517 (2016).

    Article  Google Scholar 

  56. Y. Zhang, Z.Z. Fang, P. Sun, T.Y. Zhang, Y. Xia, C.S. Zhou, and Z. Huang, J. Am. Chem. Soc. 138, 6916 (2016).

    Article  Google Scholar 

  57. Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B.V. Devener, M. Free, H. Lefler, and S. Zheng, Chem. Eng. J. 308, 299 (2017).

    Article  Google Scholar 

  58. Y. Xia, Z.Z. Fan, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and Z. Huang, Mater. Trans. 58, 355 (2017).

    Article  Google Scholar 

  59. T. Yahata, T. Ikeda, and M. Maeda, Metall. Trans. B 24B, 599 (1993).

    Article  Google Scholar 

  60. B. Rotmann, C. Lochbichler, and B. Friedrich, Proceedings of EMC 2011 (2011), Total 15 pages.

  61. Y. Su, L. Wang, L. Luo, X. Jiang, J. Guo, and H. Fu, Int. J. Hydrogen Energy 34, 8958 (2009).

    Article  Google Scholar 

  62. J.-M. Oh, K.-M. Roh, and J.-W. Lim, Int. J. Hydrogen Energy 41, 23033 (2016).

    Article  Google Scholar 

  63. J. Reitz, C. Lochbichler, and B. Friedrich, Intermetallics 19, 762 (2011).

    Article  Google Scholar 

  64. M. Bartosinski, S. Hassan-Pour, B. Friedrich, S. Ratiev, and A. Ryabtsev, IOP Conf. Series: Mater. Sci. Eng., 143, 012009 (2016), Total 11 pages.

  65. J.-M. Oh, K.-M. Roh, B.-K. Lee, C.-Y. Suh, W. Kim, H. Kwon, and J.-W. Lim, J. Alloys Compd. 593, 61 (2014).

    Article  Google Scholar 

  66. K.-M. Roh, C.-Y. Suh, J.-M. Oh, W. Kim, H. Kwon, and J.-W. Lim, Powder Technol. 253, 266 (2014).

    Article  Google Scholar 

  67. V.A. Liskovich, Yu.G. Olesov, V.S. Ustinov, A.N. Rubtsov, A.B. Suchkov, Y.N. Nazarova, and A.I. Boiko, \( Izvestii\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{a} \) Akademii nauk SSSR. Metally, No. 5, UDC 669.295.5’71′292.4, 233 (1969).

  68. J.R. Nettle, D.H. Baxer Jr., and F.S. Wartman, United States Bureau of Mines, Report of Investigations 5315 (Washington, DC: USBM, 1957).

    Google Scholar 

  69. A.B. Suchkov, Z.A. Tubyshki, Z.I. Sokolova, and N.V. Zhukova, Russ. Metall. 6, 52 (1969).

    Google Scholar 

  70. S. Takeuchi and O. Watanabe, J. Jpn. Inst. Met. 28, 633 (1964).

    Article  Google Scholar 

  71. S. Takeuchi and O. Watanabe, J. Jpn. Inst. Met. 28, 728 (1964).

    Article  Google Scholar 

  72. Y. Hashimoto, K. Uriya, and R. Kono, Denki Kagaku 39, 516 (1971).

    Google Scholar 

  73. Y. Hashimoto, Denki Kagaku 39, 938 (1971).

    Google Scholar 

  74. Y. Hashimoto, Denki Kagaku 40, 39 (1972).

    Google Scholar 

  75. H. Miyazaki, Y. Yamakoshi, and Y. Shindo, Materia Jpn. 33, 51 (1994).

    Article  Google Scholar 

  76. R. Matsuoka and T.H. Okabe, Proceedings of the Symposium on Metallurgical Technology for Waste Minimization at the 2005 TMS Annual Meeting, (San Francisco, CA, 2005.2.13-17).

  77. H. Zheng and T.H. Okabe, J. Alloys Compd. 461, 459 (2008).

    Article  Google Scholar 

  78. Y. Taninouchi, Y. Hamanaka, and T.H. Okabe, Mater. Trans. 57, 1309 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Toshiyuki Obikawa and Prof. Akira Hashimoto of The University of Tokyo, Mr. Rob Henderson of Boeing Japan KK, Mr. Osamu Koike and Mr. Kazuhiro Kinoshita of the Japan Titanium Society, Mr. Kazuhiro Taki of Toho Technical Service Co. Ltd., Mr. Yuichi Ono of Toho Titanium Co. Ltd., Mr. Kotaro Watanabe of the Japan Association for Trade with Russia & New Independent States (NIS), and Associate Professor of Yuki Taninouchi of Kyoto University for valuable comments and suggestions. This research was partly funded by a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant #26220910) by JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Takeda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, O., Okabe, T.H. Current Status of Titanium Recycling and Related Technologies. JOM 71, 1981–1990 (2019). https://doi.org/10.1007/s11837-018-3278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3278-1

Navigation