Skip to main content
Log in

Development of Novel Material Systems and Coatings for Extreme Environments: A Brief Overview

  • Technological Innovations in Metals Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The aim of this paper is to briefly analyze different methodologies for development of novel materials systems and coatings for use in extreme environments, with a focus on high-temperature applications in aerospace and aeronautics. The approach is based on a comparative analysis of selected major thermal stability properties of different material systems (mainly transition-metal oxides and carbides) used in thermal protection systems and how different existing coating methods can be used as best available technologies to implement these new materials in high-temperature coatings. Finally, an original example of high-temperature coatings based on barium and lanthanum zirconates with perovskite structure obtained by electron beam vapor deposition is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. French, G. Krijnen, and F. Roozeboom, Microsyst. Nanoeng. 2, 16048 (2016).

    Article  Google Scholar 

  2. R.J. Hemley, Off. Basic Energy Sci. (2008). https://doi.org/10.2172/935440.

    Google Scholar 

  3. N. Simos, Composite Materials/Book 2 (Delft: InTECH Open Publisher, 2011).

    Google Scholar 

  4. E.J. Oughton, A. Skelton, R.B. Horne, A.W.P. Thomson, and C.T. Gaunt, Space Weather 15, 65 (2017).

    Article  Google Scholar 

  5. M.H. Hapgood, R.B. Kerridge, D. Jones, B. Cannon, P. Ryden, K. Gibbs, M. Jackson, D. Rodger, A. Thomson, A. Dyer, and C. Cander, Summary of Space Weather Worst-case Environments (Didcot: RAL Technical Report, Science and Technology Facilities Council, 2012).

    Google Scholar 

  6. Space Studies Board, A Workshop Report (Washington: National Academies Press, 2009).

    Google Scholar 

  7. C.J. Schrijver, K. Kauristie, A.D. Aylward, C.M. Denardini, S.E. Gibson, and A. Glover, Adv. Space Res. 55, 2745 (2015).

    Article  Google Scholar 

  8. J.P. Eastwood, E. Biffis, M.A. Hapgood, L. Green, M.M. Bisi, R.D. Bentley, R. Wicks, L.A. McKinnell, M. Gibbs, and C. Burnett, Risk Anal. 37, 206 (2017).

    Article  Google Scholar 

  9. J. Binner, B. Lee, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications (IV-An ECI Conference Series Cumberland Lodge, Windsor, 2017).

  10. X.Q. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc. 24, 1 (2014).

    Article  Google Scholar 

  11. E.L. Corral, Adv. Mater. Process. 166, 30 (2008).

    Google Scholar 

  12. W.G. Fahrenholtz, J. Binner, and J. Zhou, J. Mater. Res. 31, 2757 (2016).

    Article  Google Scholar 

  13. R.V. Dennis, J.L. Andrews, V.S. Patil, and S. Banerjee, Mater. Res. Express 2, 032001 (2015).

    Article  Google Scholar 

  14. W. Gissler and H.A. Jehn, Advanced Techniques for Surface Engineering (New York: Springer, 1992).

    Book  Google Scholar 

  15. A. Tiwari, R. Wang, and B. Wei, Advanced Surface Engineering Materials (Beverly, MA: Scrivener Publishing LLC, 2016).

    Book  Google Scholar 

  16. D.K. Dwoivedi, Surface Engineering (New York: Springer, 2018).

    Book  Google Scholar 

  17. A. Eder, G. Schmid, H. Mahr, and C. Eisenmenger-Sittner, Eur. Phys. J. D 70, 247 (2016).

    Article  Google Scholar 

  18. K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Technol. 204, 1661 (2010).

    Article  Google Scholar 

  19. P.M. Martin, Handbook of Deposition Technologies for Films and Coatings, 3rd ed. (Amsterdam: Elsevier, 2010).

    Google Scholar 

  20. Y. Kuzminykh, A. Dabirian, M. Reinke, and P. Hoffmann, Surf. Coat. Technol. 230, 13 (2013).

    Article  Google Scholar 

  21. J.T.D. Marcin and D.K. Gupta, Surf. Coat. Technol. 68–69, 1 (1994).

    Article  Google Scholar 

  22. P.C. Patnaik, X. Huang, J. Singh, Meeting Proceedings RTO-MP-AVT-135 (Paper 38, 2006)

  23. J.D. Rigney, A.F. Maricocchi, B.R.Tholke, K.S. Fessenden, J.D. Evans, Method for forming a thermal barrier coating by electron beam physical vapor deposition, US Patent No. 6,342,278B1 (2002)

  24. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, J. Thermal Spray Technol. 17, 115 (2007).

    Article  Google Scholar 

  25. P. Fauchais, V. Rat, J.-F. Coudert, R.E. Salas, and G. Montavon, Surf. Coat. Technol. 202, 4309 (2008).

    Article  Google Scholar 

  26. B. Bernard, A. Quet, L. Bianchi, A. Joulia, A. Malie, V. Schick, and B. Remy, Surf. Coat. Technol. 318, 122 (2017).

    Article  Google Scholar 

  27. S.-Y. Ho, A. Kotousov, P. Nguyen, S. Harding, J. Codrington, and H. Tsukamoto, Report No 064043 (Adelaide: University of Adelaide, 2017).

    Google Scholar 

  28. S.M. Johnson, 16th AIAA/DLR/DGLR International Space Planes & Hypersonic Systems & Technologies Conference (Bremen, 2009)

  29. R. Darolia, Int. Mater. Rev. 58, 315 (2013).

    Article  Google Scholar 

  30. M.F. Morks, I. Cole, and A. Kobayashi, Vacuum 88, 134 (2013).

    Article  Google Scholar 

  31. S.A. Kuznetsov, Chem. Pap. 66, 511 (2012).

    Article  Google Scholar 

  32. A. Ganvir, N. Curry, S. Govindarajan, and N. Markocsan, Int. J. Appl. Ceram. Technol. 13, 324 (2016).

    Article  Google Scholar 

  33. E.H. Jordan, C. Jiang, and M. Gell, Thermal Spray Technol. 24, 1153 (2015).

    Article  Google Scholar 

  34. M. Urbina, A. Rinaldi, S. Cuesta-Lopez, A. Sobetkii, A.E. Slobozeanu, P. Szakalos, Y. Qin, M. Prakasam, and R.R. Piticescu, Manuf. Rev. 5, 9 (2018). https://doi.org/10.1051/mfreview/2018006.

    Google Scholar 

  35. B.A. Movchan and K.Y. Yakovchuk, J. Coat. Sci. Technol. 1, 96 (2014).

    Google Scholar 

  36. A. Sobetkii, A.I. Tudor, C.F. Rusti, R.R. Piticescu, A. Rinaldi, D. Valerini, Proceedings 18th EEEI Conference (Palermo, 2018)

  37. D.M. Sanders, A. Anders, The 27th International Conference on Metallurgical Coatings and Thin Films-ICMCTF2000 (San Diego, 2000), p. 110–114

  38. R. Prabu, S. Ramesh, M. Savitha, M. Balachandar, Proceedings of the International Conference on Sustainable Manufacturing, p. 427 (2013)

Download references

Acknowledgements

Financial support from H2020 Grant Agreement TWINNING 692216 “The Virtual Center for Sustainable Development of Advanced Materials Operating under Extreme Conditions” (SUPERMAT) and COST Action 15102 “Solutions for Critical Raw Materials under Extreme Conditions” is acknowledged. R.R.P. and A.S. also acknowledge financial support from the grant of the Romanian Ministry of Research and Innovation, RDI Program for Space Technology and Advanced Research - STAR, project number 528 (Androtech) and Core Program 1807/2018 Emernef with support from MCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu R. Piticescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piticescu, R.R., Urbina, M., Rinaldi, A. et al. Development of Novel Material Systems and Coatings for Extreme Environments: A Brief Overview. JOM 71, 683–690 (2019). https://doi.org/10.1007/s11837-018-3273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3273-6

Navigation