Skip to main content
Log in

Bacterial Growth and Death on Cotton Fabrics Conformally Coated with ZnO Thin Films of Varying Thicknesses via Atomic Layer Deposition (ALD)

  • Application of Atomic Layer Deposition for Functional Nanomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hospital fabrics are commonly exposed to multiple patients and contaminated surfaces between washing/sterilization cycles. Consequently, these textiles act as vectors for the spread of diseases, especially bacterial pathogens. Many modification schemes have been proposed to mitigate the growth and spread of bacteria on fabrics, including use of antimicrobial metal oxide nanoparticles. The aim of this study is to examine the effectiveness of conformal nanoscale ZnO coatings applied to cotton fabrics via atomic layer deposition to control bacterial spread. We find that, at low ZnO loading fractions, bacteria metabolize Zn2+ ions and reproduce more rapidly. However, as the ZnO loading is increased, the higher concentrations of Zn2+ overwhelm the bacteria and the nanocoatings become effective antibacterial treatments, killing all bacteria present. These results map out an important design space for implementing ZnO coatings as a potential antimicrobial treatment for textiles and other surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Ref. 41 (Color figure online)

Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Mitchell, M. Spencer, and C. Edmiston Jr., J. Hosp. Infect. 90, 285 (2015).

    Article  Google Scholar 

  2. Centers for Disease Control and Prevention, Types of Healthcare-Associated Infections (Centers for Disease Control and Prevention, 2014, March 26). https://www.cdc.gov/hai/infectiontypes.html. Accessed 15 June 2018.

  3. I. Perelshtein, A. Lipovsky, N. Perkas, T. Tzanov, M. Arguirova, M. Leseva, and A. Gedanken, Ultrason. Sonochem. 25, 82 (2015).

    Article  Google Scholar 

  4. K.N. Kelly and J.R. Monson, Surg. (Oxf.) 30, 640 (2012).

    Article  Google Scholar 

  5. L.S. Munoz-Price, K.L. Arheart, J.P. Mills, T. Cleary, D. DePascale, A. Jimenez, Y. Fajardo-Aquino, G. Coro, D.J. Birnbach, and D.A. Lubarsky, Am. J. Infect. Control 40, 245 (2012).

    Article  Google Scholar 

  6. J.M. Nordstrom, K.A. Reynolds, and C.P. Gerba, Am. J. Infect. Control 40, 539 (2012).

    Article  Google Scholar 

  7. G. Suleyman, G. Alangaden, and A.C. Bardossy, Curr. Infect. Dis. Rep. 20, 1 (2018).

    Article  Google Scholar 

  8. J. Sawai, J. Microbiol. Methods 54, 177 (2003).

    Article  Google Scholar 

  9. P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. de Andrade, R.S. Cruz, and E.A.A. Medeiros, Food Bioprocess Technol. 5, 1447 (2012).

    Article  Google Scholar 

  10. P. Chandrangsu, C. Rensing, and J.D. Helmann, Nat. Rev. Microbiol. 15, 338 (2017).

    Article  Google Scholar 

  11. A.A. Navarrete, E.V. Mellis, A. Escalas, L.N. Lemos, J.L. Junior, J.A. Quaggio, J. Zhou, and S.M. Tsai, Agric. Ecosyst. Environ. 236, 187 (2017).

    Article  Google Scholar 

  12. M. Li, L. Zhu, and D. Lin, Environ. Sci. Technol. 45, 1977 (2011).

    Article  Google Scholar 

  13. K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, and A. Punnoose, Appl. Phys. Lett. 90, 213902 (2007).

    Article  Google Scholar 

  14. W.A. Daoud and J.H. Xin, J. Am. Ceram. Soc. 87, 953 (2004).

    Article  Google Scholar 

  15. H. Zhang and G. Chen, Environ. Sci. Technol. 43, 2905 (2009).

    Article  Google Scholar 

  16. B. Mahltig, H. Haufe, and H. Böttcher, J. Mater. Chem. 15, 4385 (2005).

    Article  Google Scholar 

  17. A. Yadav, V. Prasad, A.A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, and N. Vigneshwaran, Bull. Mater. Sci. 29, 641 (2006).

    Article  Google Scholar 

  18. B.A. Holt, S.A. Gregory, T. Sulchek, S. Yee, and M.D. Losego, A.C.S. Appl. Mater. Interfaces 10, 7709 (2018).

    Article  Google Scholar 

  19. M. Vasanthi, K. Ravichandran, N.J. Begum, G. Muruganantham, S. Snega, A. Panneerselvam, and P. Kavitha, Superlattices Microstruct. 55, 180 (2013).

    Article  Google Scholar 

  20. A. Arunachalam, S. Dhanapandian, C. Manoharan, and G. Sivakumar, Spectrochim. Acta Part A 138, 105 (2015).

    Article  Google Scholar 

  21. A.G. Cuevas, K. Balangcod, T. Balangcod, and A. Jasmin, Procedia Eng. 68, 537 (2013).

    Article  Google Scholar 

  22. Y.Y. Xi, B.Q. Huang, A.B. Djurišić, C.M. Chan, F.C. Leung, W.K. Chan, and D.T. Au, Thin Solid Films 517, 6527 (2009).

    Article  Google Scholar 

  23. G.J. Chi, S.W. Yao, J. Fan, W.G. Zhang, and H.Z. Wang, Surf. Coat. Technol. 157, 162 (2002).

    Article  Google Scholar 

  24. N.A. Aal, F. Al-Hazmi, A.A. Al-Ghamdi, A.A. Al-Ghamdi, F. El-Tantawy, and F. Yakuphanoglu, Spectrochim. Acta Part A 135, 871 (2015).

    Article  Google Scholar 

  25. K.H. Tam, A.B. Djurišić, C.M.N. Chan, Y.Y. Xi, C.W. Tse, Y.H. Leung, W.K. Chan, F.C.C. Leung, and D.W.T. Au, Thin Solid Films 516, 6167 (2008).

    Article  Google Scholar 

  26. G.K. Hyde, K.J. Park, S.M. Stewart, J.P. Hinestroza, and G.N. Parsons, Langmuir 23, 9844 (2007).

    Article  Google Scholar 

  27. G.K. Hyde, G. Scarel, J.C. Spagnola, Q. Peng, K. Lee, B. Gong, K.G. Roberts, K.M. Roth, C.A. Hanson, C.K. Devine, and S.M. Stewart, Langmuir 26, 2550 (2010).

    Article  Google Scholar 

  28. K. Lee, J.S. Jur, D.H. Kim, and G.N. Parsons, J. Vac. Sci. Technol. A 30, 01A163 (2012).

    Article  Google Scholar 

  29. S.M. George, Chem. Rev. 110, 111 (2010).

    Article  Google Scholar 

  30. R.L. Puurunen, J. Appl. Phys. 97, 9 (2005).

    Article  Google Scholar 

  31. B.D. Piercy and M.D. Losego, J. Vac. Sci. Technol. B 33, 043201 (2015).

    Article  Google Scholar 

  32. E. Guziewicz, I.A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wójcik, S. Yatsunenko, E. Łusakowska, W. Paszkowicz, and M. Guziewicz, J. Appl. Phys. 103, 033515 (2008).

    Article  Google Scholar 

  33. S.K. Kim, C.S. Hwang, S.-H.K. Park, and S.J. Yun, Thin Solid Films 478, 103 (2005).

    Google Scholar 

  34. D. Price, A. Horrocks, M. Akalin, and A. Faroq, J. Anal. Appl. Pyrolysis 40, 511 (1997).

    Article  Google Scholar 

  35. M. Yatagai and S.H. Zeronian, Cellulose 1, 205 (1994).

    Article  Google Scholar 

  36. A.E. Shafei and A. Abou-Okeil, Carbohydr. Polym. 83, 920 (2011).

    Article  Google Scholar 

  37. AATCC, TM100:2004 Assessment of Antibacterial Finishes on Textile Materials, Developed from American Association of Textile Chemists and Colorists (2004).

  38. J. Jur, W.J. Sweet, C.J. Oldham, and G.N. Parsons, Adv. Funct. Mater. 21, 1993 (2011).

    Article  Google Scholar 

  39. D. Hojo, G. K. Hyde, J. Spagnola, and G. N. Parsons, MRS Online Proceedings Library, 1054 (2007).

  40. S. Selvam, R. Rajiv Gandhi, J. Suresh, S. Gowri, S. Ravikumar, and M. Sundrarajan, Int. J. Pharm. 434, 366 (2012).

    Article  Google Scholar 

  41. K. Hantke, Zinc Biochemistry, Physiology, and Homeostasis (Dordrecht: Springer, 2001), pp. 53–63.

    Book  Google Scholar 

  42. N. Padmavathy and R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 035004 (2008).

    Article  Google Scholar 

  43. M.G. Palmgren, S. Clemens, L.E. Williams, U. Krämer, S. Borg, J.K. Schjørring, and D. Sanders, Trends Plant Sci. 13, 464 (2008).

    Article  Google Scholar 

  44. B.A. Holt, M.C. Bellavia, D. Potter, D. White, S.R. Stowell, and T. Sulchek, Biomater. Sci. 5, 463 (2017).

    Article  Google Scholar 

  45. M.L. Kääriäinen, C.K. Weiss, S. Ritz, S. Pütz, D.C. Cameron, V. Mailänder, and K. Landfester, Appl. Surf. Sci. 287, 375 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project came from the Georgia Tech President’s Undergraduate Research Award (PURA), the Petit Bioengineering Undergraduate Research Fellowship, and the Roxanne D. Westendorf Undergraduate Research Fund. Additionally, this material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650044. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Part of this research was conducted in Georgia Tech’s Materials Innovation & Learning Laboratory (The MILL), an uncommon “make and measure” space committed to elevating undergraduate research in materials science. This work was also performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant No. ECCS-1542174). Finally, the authors thank Brandon D. Piercy for performing x-ray diffraction for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Losego.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puvvada, R.U., Wooding, J.P., Bellavia, M.C. et al. Bacterial Growth and Death on Cotton Fabrics Conformally Coated with ZnO Thin Films of Varying Thicknesses via Atomic Layer Deposition (ALD). JOM 71, 178–184 (2019). https://doi.org/10.1007/s11837-018-3154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3154-z

Navigation