Skip to main content
Log in

The Effect of Pseudomonas fluorescens on the Corrosion Morphology of Archaeological Tin Bronze Analogues

  • Technical Article: Archaeomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work focuses on the localized forms of corrosion caused by microbiological activity, which have seldom been considered for long-term alteration processes of copper-based alloys. To reproduce a seldom-documented corrosion morphology found in some archaeological objects, called ‘tentacle like’, a Pseudomonas fluorescens strain was used on analogues of known composition in a solution containing sulfates, carbonates, nitrates and chlorides. The effect of such bacteria has already been assessed in a previous study, and a localized type of corrosion was defined. The results show that, when a biofilm grows on the surface of the samples, pits are observed under the corrosion products, while in the presence of chloride ions, these pits propagate under the metallic surface and into the matrix, forming uncommon morphologies ascribed to the type “tentacle like”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.A. Scott, Copper and Bronze in Art: Corrosion Colorants Conservation (Los Angeles: Getty Publications, 2002).

    Google Scholar 

  2. R.F. Tylecote, J. Archaeol. Sci. 6, 345 (1979).

    Article  Google Scholar 

  3. M.C. Bernard and S. Joiret, Electrochim. Acta 54, 5199 (2009).

    Article  Google Scholar 

  4. L. Robbiola, J.M. Blengino, and C. Fiaud, Corros. Sci. 40, 2083–2111 (1998).

    Article  Google Scholar 

  5. C. Pearson, eds., Conservation of Marine Archaeological Objects (London: Butterworths, 1987).

    Google Scholar 

  6. D.A. Scott, J. Am. Inst. Conserv 29, 193 (1990).

    Article  Google Scholar 

  7. P. Piccardo B. Mille, and L. Robbiola, in P. Dillmann, G. Beranger, P. Piccardo, and H. Matthiesen (eds) Corrosion of Metallic Heritage ArtefactsInvestigation, Conservation and Prediction of Long-Term Behaviour (Woodhead, Cambridge, 2007) p. 239.

  8. J. Redondo-Marugán, J. Piquero-Cilla, M.T. Doménech-Carbó, B. Ramírez-Barat, W. Al Sekhaneh, S. Capelo, and A. Doménech-Carbó, Electrochim. Acta 246, 269 (2017).

    Article  Google Scholar 

  9. M. Bethencourt, T. Fernández-Montblanc, A. Izquierdo, M.M. González-Duarte, and C. Muñoz-Mas, Sci. Total Environm. 613–614, 98 (2018).

    Article  Google Scholar 

  10. M.P. Casaletto, T. De Caro, G.M. Ingo, and C. Riccucci, Appl. Phys. A 83, 611 (2006).

    Article  Google Scholar 

  11. A.M. Pollard, R.G. Thomas, and P.A. Williams, Stud. Conserv. 35, 148 (1990).

    Google Scholar 

  12. D.A. Scott, Stud. Conserv. 45, 39 (2000).

    Google Scholar 

  13. I.D. Macleod, J. Electroan Chme Interf Electrochem. 118, 291 (1981).

    Article  Google Scholar 

  14. R.F. Tylecote, Int. J. Nautical Archaeol. Underwater Explor. 6, 269 (1977).

    Article  Google Scholar 

  15. A. Sanchez del Junco, D.A. Moreno, C. Ranninger, J.J. Ortega-Calvo, and C. Saiz-Jimenez, Int. Biodet. Biodegrad. 29, 367 (1992).

    Article  Google Scholar 

  16. C. Rémazeilles, M. Saheb, D. Neff, E. Guilminot, K. Tran, J.A. Bourdoiseau, R. Sabot, M. Jeannin, H. Matthiesen, P. Dillmann, and P. Refait, J. Raman Spectrosc. 41, 1425 (2010).

    Article  Google Scholar 

  17. M.B. McNeil and B.J. Little, J. Am. Inst. Cons. 38, 186 (1999).

    Article  Google Scholar 

  18. C. Rémazeilles, A. Dheilly, S. Sable, I. Lanneluc, D. Neff, and P. Refait, CEST 45, 388 (2010).

    Article  Google Scholar 

  19. G.M. Ingo, T. de Caro, C. Riccucci, and S. Khosroff, Appl. Phys. A 83, 581 (2006).

    Article  Google Scholar 

  20. P. Piccardo, M. Mödlinger, G. Ghiara, S. Campodonico, and V. Bongiorno, Appl. Phys. A 13, 1039 (2013).

    Article  Google Scholar 

  21. G. Ghiara, C. Grande, S. Ferrando, and P. Piccardo, JOM 70, 81 (2018). https://doi.org/10.1007/s11837-017-2674-2.

    Article  Google Scholar 

  22. L.A. Giannuzzi and F.A. Stevie, eds., Introduction to Focused ion Beams. Instrumentation, Theory, Techniques and Practice (Boston: Springer Science and Business Media Inc., 2005).

    Google Scholar 

  23. L.A. Giannuzzi and F.A. Stevie, Micron 30, 197 (1999).

    Article  Google Scholar 

  24. G. Characklis and K.C. Marshall, Biofilms (New York: Wiley, 1990).

    Google Scholar 

  25. B.J. Little, J.S. Lee, and R.I. Ray, Corrosion (Houston: NACE International, 2006).

    Google Scholar 

  26. X.C. Chen, W.X. Wu, J.Y. Shi, X.H. Xu, H. Wang, and Y.X. Chen, Colloids Surf. B 54, 46 (2001).

    Article  Google Scholar 

  27. F. Ammeloot, C. Fiaud, and E.M.M. Sutter, Electrochim. Acta 44, 2549 (1999).

    Article  Google Scholar 

Download references

Acknowledgement

We thank American Journal Experts (AJE) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ghiara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiara, G., Repetto, L. & Piccardo, P. The Effect of Pseudomonas fluorescens on the Corrosion Morphology of Archaeological Tin Bronze Analogues. JOM 71, 779–783 (2019). https://doi.org/10.1007/s11837-018-3138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3138-z

Navigation