Skip to main content

Advertisement

Log in

Recent Progress on Laser Manufacturing of Microsize Energy Devices on Flexible Substrates

  • Functional Materials for Printed, Flexible, and Wearable Electronics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We report on the impact of laser processing on material and device performance characteristics for integrated energy applications. A femtosecond laser was used for development of flexible and transparent supercapacitors, while a nanosecond laser was successfully exploited for high-performance Al–air battery development. A laser direct-write process enabled integration of a three-dimensional-structured micro-supercapacitor on flexible polymer substrate, exhibiting peak specific capacitance of 42.6 mF/cm2 at current density of 0.1 mA/cm2. Femtosecond laser processing was also exploited for development of a novel transparent supercapacitor on silk substrate. The MnO2-coated transparent supercapacitors exhibited high transmittance exceeding 59%. Laser processing in combination with printing technique was used for development of a novel Al–air battery. The nanosecond laser process was effective in sintering the anode printed using Al nanoparticle ink. The efficiency of the laser sintering process was reflected in good battery discharge performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. 31

Fig. 2

Adapted from Ref. 31

Fig. 3

Adapted from Ref. 39

Fig. 4

Adapted from Ref. 39

Fig. 5

Adapted from Ref. 53

Fig. 6

Adapted from Ref. 53

Fig. 7

Adapted from Ref. 53

Similar content being viewed by others

References

  1. X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, and G. Shen, Adv. Mater. 26, 4763 (2014).

    Article  Google Scholar 

  2. Z.-S. Wu, X. Feng, and H.-M. Cheng, Natl. Sci. Rev. 1, 277 (2014).

    Article  Google Scholar 

  3. S. Bai, W. Zhou, Y. Lin, Y. Zhao, T. Chen, A. Hu, and W. Duley, J. Nanopart. Res. 16, 2470 (2014).

    Article  Google Scholar 

  4. R.-Z. Li, R. Peng, K. Kihm, S. Bai, D. Bridges, U. Tumuluri, Z. Wu, T. Zhang, G. Compagnini, and Z. Feng, Energy Environ. Sci. 9, 1458 (2016).

    Article  Google Scholar 

  5. A. Hu, R. Li, D. Bridges, W. Zhou, S. Bai, D. Ma, and P. Peng, J. Laser Appl. 28, 022602 (2016).

    Article  Google Scholar 

  6. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, and M. Chesneau, J. Power Sources 101, 109 (2001).

    Article  Google Scholar 

  7. K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, and Y.H. Lee, Adv. Mater. 11, 387 (2001).

    Google Scholar 

  8. D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, and H. Durou, J. Power Sources 195, 1266 (2010).

    Article  Google Scholar 

  9. Y. Wang, Y. Shi, C.X. Zhao, J.I. Wong, X.W. Sun, and H.Y. Yang, Nanotechnology 25, 094010 (2014).

    Article  Google Scholar 

  10. W. Zhou, S. Bai, Y. Ma, D. Ma, T. Hou, X. Shi, A. Hu, and A.C.S. Appl, Mater. Interfaces 8, 24887 (2016).

    Article  Google Scholar 

  11. A. Hu, M. Rybachuk, Q.-B. Lu, and W. Duley, Appl. Phys. Lett. 91, 131906 (2007).

    Article  Google Scholar 

  12. C. Zheng, A. Hu, K.D. Kihm, Q. Ma, R. Li, T. Chen, and W. Duley, Small 11, 3007 (2015).

    Article  Google Scholar 

  13. R.-Z. Li, A. Hu, D. Bridges, T. Zhang, K.D. Oakes, R. Peng, U. Tumuluri, Z. Wu, and Z. Feng, Nanoscale 7, 7368 (2015).

    Article  Google Scholar 

  14. J. Niittynen, R. Abbel, M. Mäntysalo, J. Perelaer, U.S. Schubert, and D. Lupo, Thin Solid Films 556, 452 (2014).

    Article  Google Scholar 

  15. J.R. Greer and R.A. Street, Acta Mater. 55, 6345 (2007).

    Article  Google Scholar 

  16. A. Hu, J. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C. Xu, Appl. Phys. Lett. 97, 153117 (2010).

    Article  Google Scholar 

  17. P.C. Joshi, T. Kuruganti, and S.M. Killough, ECS J. Solid State Sci. Technol. 4, P3091 (2015).

    Article  Google Scholar 

  18. I. Reinhold, C.E. Hendriks, R. Eckardt, J.M. Kranenburg, J. Perelaer, R.R. Baumann, and U.S. Schubert, J. Mater. Chem. 19, 3384 (2009).

    Article  Google Scholar 

  19. M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, and H. Seppä, Nanotechnology 19, 175201 (2008).

    Article  Google Scholar 

  20. M. Beidaghi and C. Wang, Adv. Funct. Mater. 22, 4501 (2012).

    Article  Google Scholar 

  21. C. Cheng, S. Wang, J. Wu, Y. Yu, R. Li, S. Eda, J. Chen, G. Feng, B. Lawrie, A. Hu, and A.C.S. Appl, Mater. Interfaces 8, 17784 (2016).

    Article  Google Scholar 

  22. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C.M. Soukoulis, Nat. Mater. 3, 444 (2004).

    Article  Google Scholar 

  23. S.D. Gittard and R.J. Narayan, Expert Rev. Med. Devices 7, 343 (2010).

    Article  Google Scholar 

  24. C. Zheng, A. Hu, R. Li, D. Bridges, and T. Chen, Opt. Express 23, 17584 (2015).

    Article  Google Scholar 

  25. R. Srinivasan and W. Leigh, J. Am. Chem. Soc. 104, 6784 (1982).

    Article  Google Scholar 

  26. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L. Samuel, M.J. Yacaman, B.I. Yakobson, and J.M. Tour, Nat. Commun. 5, 5714 (2014).

    Article  Google Scholar 

  27. L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao, Y. Ji, R. Ye, N.D. Kim, Q. Zhong, and Y. Yang, Adv. Mater. 28, 838 (2016).

    Article  Google Scholar 

  28. Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao, Y. Tang, J. Jiang, D. Wu, and X. Feng, Adv. Mater. 28, 1981 (2016).

    Article  Google Scholar 

  29. J. Cai, C. Lv, and A. Watanabe, J. Mater. Chem. A Mater. 4, 1671 (2016).

    Article  Google Scholar 

  30. J. Cai, C. Lv, and A. Watanabe, Nano Energy 30, 790 (2016).

    Article  Google Scholar 

  31. S. Wang, Y. Yu, R. Li, G. Feng, Z. Wu, G. Compagnini, A. Gulino, Z. Feng, and A. Hu, Electrochim. Acta 241, 153 (2017).

    Article  Google Scholar 

  32. J.B. In, B. Hsia, J.-H. Yoo, S. Hyun, C. Carraro, R. Maboudian, and C.P. Grigoropoulos, Carbon 83, 144 (2015).

    Article  Google Scholar 

  33. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, Nat. Commun. 5 (2014).

  34. S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T.J. Marks, and D.B. Janes, Nat. Nanotechnol. 2, 378 (2007).

    Article  Google Scholar 

  35. G. Yu, A. Cao, and C.M. Lieber, Nat. Nanotechnol. 2, 372 (2007).

    Article  Google Scholar 

  36. Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, and A.F. Hebard, Science 305, 1273 (2004).

    Article  Google Scholar 

  37. Y. Yang, S. Jeong, L. Hu, H. Wu, S.W. Lee, and Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 108, 13013 (2011).

    Article  Google Scholar 

  38. X. Liu, Y. Gao, and G. Yang, Nanoscale 8, 4227 (2016).

    Article  Google Scholar 

  39. D. Ma, Y. Ma, Z. Chen, and A. Hu, J. Mater. Chem. A. 5, 20608 (2017).

    Article  Google Scholar 

  40. Y. Gong, D. Li, Q. Fu, and C. Pan, Prog. Nat. Sci. 25, 379 (2015).

    Article  Google Scholar 

  41. L. Demarconnay, E. Raymundo-Pinero, and F. Béguin, J. Power Sources 196, 580 (2011).

    Article  Google Scholar 

  42. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Nano Lett. 11, 4438 (2011).

    Article  Google Scholar 

  43. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai, Adv. Mater. 23, 4828 (2011).

    Article  Google Scholar 

  44. M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  Google Scholar 

  45. H. Ibrahim, A. Ilinca, and J. Perron, Renew. Sustain. Energy Rev. 12, 1221 (2008).

    Article  Google Scholar 

  46. S.W. Kim, D.H. Seo, X. Ma, G. Ceder, and K. Kang, Adv. Energy Mater. 2, 710 (2012).

    Article  Google Scholar 

  47. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, Prog. Nat. Sci. 19, 291 (2009).

    Article  Google Scholar 

  48. C.-X. Zu and H. Li, Energy Environ. Sci. 4, 2614 (2011).

    Article  Google Scholar 

  49. R. McKerracher, C. Ponce de Leon, R. Wills, A. Shah, and F.C. Walsh, ChemPlusChem 80, 323 (2015).

    Article  Google Scholar 

  50. M. Kar, T.J. Simons, M. Forsyth, and D.R. MacFarlane, Phys. Chem. Chem. Phys. 16, 18658 (2014).

    Article  Google Scholar 

  51. D. Linden (New York, McGraw-Hill Book Co., 1984), p.1075

  52. S. Yang and H. Knickle, J. Power Sources 112, 162 (2002).

    Article  Google Scholar 

  53. Y. Yu, M. Chen, S. Wang, C. Hill, P. Joshi, T. Kuruganti, and A. Hu, J. Electrochem. Soc. 165, A584 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The submitted manuscript has been coauthored by a contractor of the U.S. Government under Contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anming Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, S., Ma, D. et al. Recent Progress on Laser Manufacturing of Microsize Energy Devices on Flexible Substrates. JOM 70, 1816–1822 (2018). https://doi.org/10.1007/s11837-018-2986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2986-x

Navigation