Skip to main content
Log in

Microstructural Investigations in Metals Using Atom Probe Tomography with a Novel Specimen-Electrode Geometry

  • 3D Nanoscale Characterization of Metals, Minerals, and Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A new atom probe design is presented along with data showing spectral performance and selected microstructural characterization examples. The instrument includes a curved reflectron, a 532-nm laser, and an integrated, fixed-position, counter electrode in a configuration with moderate electric field enhancement that includes improvements in ease of use and cost of ownership. Both voltage-pulsed and laser-pulsed performance is shown for a variety of materials including Al, Si, W, 316 stainless steel, Inconel 718, and GaN. Characterization of grain boundaries and phase boundaries, including correlation with transmission electron backscatter diffraction results in Inconel 718, is shown. A detailed case study of the resultant microstructure between laser-beam and electron-beam additive manufacturing paths in Inconel 718 is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.W. Müller, J.A. Panitz, and S.B. McLane, Rev. Sci. Instrum. 39, 83 (1968).

    Article  Google Scholar 

  2. B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer, Atom Probe Microscopy (New York: Springer, 2012).

    Book  Google Scholar 

  3. D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, and T.F. Kelly, Local Electrode Atom Probe Tomography: A User’s Guide (New York: Springer, 2013).

    Book  Google Scholar 

  4. M.K. Miller and R.G. Forbes, Atom-Probe Tomography: The Local Electrode Atom Probe, 1st ed. (Boston: Springer, 2014).

    Google Scholar 

  5. W. Lefebvre, F. Vurpillot, and X. Sauvage, Atom Probe Tomography: Put Theory into Practice (London: Academic Press, 2016).

    Google Scholar 

  6. A. Cerezo, G.D.W. Smith, and A.R. Waugh, J. Phys. C 9, 329 (1984).

    Google Scholar 

  7. M.K. Miller, J. Phys. 47-C2, 493 (1986).

    Google Scholar 

  8. A. Cerezo, T.J. Godfrey, and G.D.W. Smith, Rev. Sci. Instrum. 59, 862 (1988).

    Google Scholar 

  9. D. Blavette, B. Deconihout, A. Bostel, J.M. Sarrau, M. Bouet, and A. Menand, Rev. Sci. Instrum. 64, 2911 (1993).

    Article  Google Scholar 

  10. T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, and S.S. Bajikar, Ultramicroscopy 62, 29 (1996).

    Article  Google Scholar 

  11. T.F. Kelly and D.J. Larson, Mat. Char. 44, 59 (2000).

    Article  Google Scholar 

  12. T.F. Kelly, T.T. Gribb, J.D. Olson, R.L. Martens, J.D. Shepard, S.A. Wiener, T.C. Kunicki, R.M. Ulfig, D.R. Lenz, E.M. Strennen, E. Oltman, J.H. Bunton, and D.R. Strait, Microsc. Microanal. 10, 373 (2004).

    Article  Google Scholar 

  13. M.K. Miller, Microsc. Microanal. 10, 150 (2004).

    Article  Google Scholar 

  14. A. Bostel, M. Yavor, L. Renaud, and B. Deconihout, patent 8074292 (6 December 2011).

  15. O. Nishikawa and M. Kimoto, Appl. Surf. Sci. 76/77, 424 (1994).

    Article  Google Scholar 

  16. D.J. Larson, C.-M. Teng, P.P. Camus, and T.F. Kelly, Appl. Surf. Sci. 87/88, 446 (1994).

    Article  Google Scholar 

  17. K. Thompson, D.J. Larson, and R. Ulfig, Microsc. Microanal. 11, 882 (2005).

    Google Scholar 

  18. T.F. Kelly and D.J. Larson, MRS Bull. 37, 150 (2012).

    Article  Google Scholar 

  19. A. Cerezo, P.H. Clifton, S. Lozano-Perez, P. Panayi, and G. Sha, Microsc. Microanal. 13, 408 (2007).

    Article  Google Scholar 

  20. P.H. Clifton, T.J. Gribb, S.S.A. Gerstl, R.M. Ulfig, and D.J. Larson, Microsc. Microanal. 14, 454 (2008).

    Article  Google Scholar 

  21. K.P. Rice, Y. Chen, R.M. Ulfig, D. Lenz, J. Bunton, M. Van Dyke, and D.J. Larson, Microsc. Microanal. 23, 42 (2017).

    Article  Google Scholar 

  22. R. Gomer, Field Emission and Field Ionization (Cambridge: Harvard University Press, 1961).

    Google Scholar 

  23. S.S. Bajikar, T.F. Kelly, and P.P. Camus, Appl. Surf. Sci. 94/95, 464 (1996).

    Article  Google Scholar 

  24. Y.B. Yildir, K.M. Prasad, and D. Zheng, Control Dyn. Syst. 59, 167 (1993).

    Article  Google Scholar 

  25. B.P. Geiser, T.F. Kelly, D.J. Larson, J. Schneir, and J.P. Roberts, Microsc. Microanal. 13, 437 (2007).

    Article  Google Scholar 

  26. P.J. Warren, A. Cerezo, and G.D.W. Smith, Ultramicroscopy 73, 261 (1998).

    Article  Google Scholar 

  27. G.S. Rohrer, J. Mater. Sci. 46, 5881 (2011).

    Article  Google Scholar 

  28. K. Babinsky, R. De Kloe, H. Clemens, and S. Primig, Ultramicroscopy 144, 9 (2014). https://doi.org/10.1016/j.ultramic.2014.04.003.

    Article  Google Scholar 

  29. K.P. Rice, Y. Chen, T.J. Prosa, and D.J. Larson, Microsc. Microanal. 22, 583 (2016).

    Article  Google Scholar 

  30. M. Herbig, Scr. Mater. (2017). https://doi.org/10.1016/j.scriptamat.2017.03.017.

    Google Scholar 

  31. K. Thompson, D.J. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).

    Article  Google Scholar 

  32. M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, and D.J. Larson, Microsc. Microanal. 13, 428 (2007).

    Article  Google Scholar 

  33. D.J. Larson, D.T. Foord, A.K. Petford-Long, A. Cerezo, and G.D.W. Smith, Nanotechnology 10, 45 (1999).

    Article  Google Scholar 

  34. D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo, and G.D.W. Smith, Ultramicroscopy 79, 287 (1999).

    Article  Google Scholar 

  35. T. Skidmore, R.G. Buchheit, and M.C. Juhas, Scr. Mater. 50, 873 (2004).

    Article  Google Scholar 

  36. B.W. Krakauer and D.N. Seidman, Phys. Rev. B 48, 6724 (1993).

    Article  Google Scholar 

  37. B. Geddes, H. Leon, and H. Xiao, Phases and Microstructure of Superalloys (Washington, DC: ASM International, 2011).

    Google Scholar 

  38. A.J. Detor, Metall. Mater. Trans. A 1 (2017).

  39. P.J. Phillips, D. McAllister, Y. Gao, D. Lv, R.E.A. Williams, B. Peterson, Y. Wang, and M.J. Mills, Appl. Phys. Lett. 100, 211913 (2012).

    Article  Google Scholar 

  40. Y. Tian, D. Mcallister, H. Colijn, M. Mills, D. Farson, M. Nordin, and S. Babu, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 45A, 4470 (2014).

    Article  Google Scholar 

  41. D.P. McAllister, Shearing Mechanisms and Complex Particle Growth in Nickel Superalloy 718 (Columbus: Ohio State University, 2016).

    Google Scholar 

  42. R. Cozar and A. Pineau, Metall. Trans. 4, 47 (1973).

    Article  Google Scholar 

  43. J.L. Burger, R.R. Biederman, and W.H. Couts, in Superalloy 718 Metall. Appl. (TMS International, 1989), pp. 207–217.

  44. K.A. Unocic, R.R. Dehoff, T. Lolla, S.S. Babu, W.J. Sames, K.A. Unocic, R.R. Dehoff, and S.S. Babu, J. Mater. Res. 29, 1920 (2014).

    Article  Google Scholar 

  45. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  46. K.T. Makiewicz, Development of Simultaneous Transformation Kinetics Microstructure Model with Application to Laser Metal Deposited Ti-6Al-4V and Alloy 718 (Columbus: Ohio State University, 2013).

    Google Scholar 

  47. T. Alam, M. Chaturverdi, S.P. Ringer, and J.M. Cairney, Mater. Sci. Eng. A 527, 7770 (2010).

    Article  Google Scholar 

  48. M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith, Atom Probe Field Ion Microscopy (Oxford: Oxford University Press, 1996).

    Google Scholar 

  49. M.K. Miller, S.S. Babu, and M.G. Burke, Mater. Sci. Eng. A 270, 14 (1999).

    Article  Google Scholar 

  50. M.K. Miller, S.S. Babu, and M.G. Burke, Mater. Sci. Eng. A 327, 84 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the entire team at the CAMECA Atom Probe Technology Center in Madison, WI. This article has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this article, or allow others to do so, for U.S. government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). Authors with a CAMECA affiliation acknowledge a financial conflict of interest with respect to the topic of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Ulfig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, D.J., Ulfig, R.M., Lenz, D.R. et al. Microstructural Investigations in Metals Using Atom Probe Tomography with a Novel Specimen-Electrode Geometry. JOM 70, 1776–1784 (2018). https://doi.org/10.1007/s11837-018-2982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2982-1

Navigation