Skip to main content
Log in

Strontium Titanate Composites for Microwave-Based Stress Sensing

  • Functional Materials for Printed, Flexible and Wearable Electronics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Composites of strontium titanate ceramic particles dispersed in epoxy resin have been manufactured for nondestructive wireless stress sensing. Magnetic coupling with a hairpin resonator on the surface of the composite was used to detect changes in the effective dielectric properties. The hairpin resonator was excited in the microwave frequency domain at 1–10 GHz, and its resonant frequency detected using a network analyzer based on the absorbed power. The results indicated a shift in the resonant frequency of the hairpin resonator under application of stress due to a change in the dielectric constant of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. von Hippel, R.G. Breckenridge, F.G. Chesley, and L. Tisza, Ind. Eng. Chem. (1946). https://doi.org/10.1021/ie50443a009.

    Google Scholar 

  2. G. Rupprecht and R.O. Bell, Phys. Rev. (1964). https://doi.org/10.1103/PhysRev.135.A748.

    Google Scholar 

  3. G.A. Samara, Phys. Rev. (1966). https://doi.org/10.1103/PhysRev.151.378.

    Google Scholar 

  4. B.D. Silverman, Phys. Rev. (1962). https://doi.org/10.1103/PhysRev.125.1921.

    Google Scholar 

  5. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, and D.G. Schlom, Nature (2004). https://doi.org/10.1038/nature02773.

    Google Scholar 

  6. L.C. Sengupta, S. Stowell, E. Ngo, M.E. Oday, and R. Lancto, Integr. Ferroelectr. (1995). https://doi.org/10.1080/10584589508012302.

    Google Scholar 

  7. W. Rehwald, Solid State Commun. (1977). https://doi.org/10.1016/0038-1098(77)90841-9.

    Google Scholar 

  8. T. Hu, J. Juuti, H. Jantunen, and T. Vilkman, J. Eur. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.082.

    Google Scholar 

  9. Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa, and M. Konno, J. Eur. Ceram. Soc. (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.05.007.

    Google Scholar 

  10. N. Jayasundere and B.V. Smith, J. Appl. Phys. (1993). https://doi.org/10.1063/1.354057.

    Google Scholar 

  11. R.L. Stenzel, Rev. Sci. Instrum. (1976). https://doi.org/10.1063/1.1134697.

    Google Scholar 

  12. Y. Rao, J. Qu, T. Marinis, and C.P. Wong, I.E.E.E. Trans Compon. Packag. Technol. (2000). https://doi.org/10.1109/6144.888853.

    Google Scholar 

  13. A. Sihvola, Electromagnetic Mixing Formulas and Applications (London: The Institute of Electrical Engineers, 1999).

    Book  Google Scholar 

  14. R.B. Piejak, V.A. Godyak, R. Garner, B.M. Alexandrovich, and N. Sternberg, J. Appl. Phys. (2004). https://doi.org/10.1063/1.1652247.

    Google Scholar 

  15. S.K. Karkari, C. Gaman, A.R. Ellingboe, I. Swindells, and J.W. Bradley, Meas. Sci. Technol. (2007). https://doi.org/10.1088/0957-0233/18/8/041.

    Google Scholar 

  16. W.J. Staszewski, W.J. Boller, and G.R. Tomlinson, Health Monit. Aerosp. Struct. (2004). https://doi.org/10.1002/0470092866.

    Google Scholar 

  17. W.J. Staszewski, S. Mahzan, and R. Traynor, Compos. Sci. Technol. (2009). https://doi.org/10.1016/j.compscitech.2008.09.034.

    Google Scholar 

  18. F. Xiang, H. Wang, and X. Yao, J. Eur. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.034.

    Google Scholar 

  19. S.D. Cho, S.Y. Lee, J.G. Hyun, and K.W. Paik, J. Mater. Sci. Mater. Electron. (2005). https://doi.org/10.1007/s10854-005-6454-3.

    Google Scholar 

  20. G.A. Samara, Ferroelectrics (1971). https://doi.org/10.1080/00150197108234102.

    Google Scholar 

  21. V. Petrovsky, A. Manohar, and F. Dogan, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2206411.

    Google Scholar 

  22. G.S. Gogna and S.K. Karkari, Appl. Phys. Express (2014). https://doi.org/10.7567/APEX.7.096101.

    Google Scholar 

  23. C.P. Wong and R.S. Bollampally, J. Appl. Polym. Sci. (1999). https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14%3C3396::AID-APP13%3E3.0.CO;2-3

Download references

Acknowledgements

The authors acknowledge assistance from Dr. Tyler Tallman’s research group at Purdue University for preparing composite samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, A., Sharma, A., Shashurin, A. et al. Strontium Titanate Composites for Microwave-Based Stress Sensing. JOM 70, 1811–1815 (2018). https://doi.org/10.1007/s11837-018-2973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2973-2

Navigation