Skip to main content
Log in

Elastic and Dielectric Properties of Active Ag/BaTiO3 Composites

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This study examines the elastic and dielectric properties of active composites consisting of barium titanate (BaTiO3) and silver (Ag) constituents using experimental and numerical approaches. The elastic constants including Young’s modulus, shear modulus and Poisson’s ratio were measured by resonant ultrasound spectroscopy (RUS), a nondestructive dynamic technique, while a dielectric (impedance) spectroscopy was used to measure the relative permittivity and dielectric loss at different frequencies. The dielectric tests were also conducted at temperature ranges from −50 to 200 °C where the two phase transformations of barium titanate at around 0 °C and 120 °C were examined. The experimental results in this study were compared to data available in the literature. In addition to the experimental work, a numerical method is also considered in order to study the effects of blending silver into barium titanate on the effective elastic and dielectric properties of the composite and the local field fluctuations. For this purpose, two micromechanics models describing the detailed composite microstructures were constructed. The first model is based on two dimensional (2D) images of realistic microstructures obtained by the scanning electronic microscopy (SEM), while the second model is based on randomly generated three-dimensional (3D) microstructures with spherical particles. The effects of loading direction, porosity, particle shape and dispersion were examined using the micromechanics models. Numerical predictions of the effective elastic and dielectric constants were compared to the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hennings D (1987) Barium titanate based ceramic materials for dielectric use. International journal of high technology ceramics 3(2):91–111

    Article  Google Scholar 

  2. Takenaka T, Maruyama K-i, Sakata K (1991) (Bi1/2Na1/2) TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9S):2236

    Article  Google Scholar 

  3. Chen C, Tuan W (1999) Mechanical and dielectric properties of BaTiO3/Ag composites. J Mater Sci Lett 18(5):353–354

    Article  Google Scholar 

  4. Kojima T et al (2009) Fabrication of BaTiO3/Ag composites using uniform Ag-deposited BaTiO3 particles. J Ceram Soc Jpn 117(1372):1328–1332

    Article  Google Scholar 

  5. Panteny S, Bowen C, Stevens R (2006) Characterisation of barium titanate-silver composites, part I: microstructure and mechanical properties. J Mater Sci 41(12):3837–3843

    Article  Google Scholar 

  6. Panteny S, Bowen C, Stevens R (2006) Characterisation of barium titanate-silver composites part II: electrical properties. J Mater Sci 41(12):3845–3851

    Article  Google Scholar 

  7. Liu X, Fan H, Shi J (2013) Effect of silver addition on the microstructures and electrical responses of La (1.7) Sr (0.3) Mo (2) O (9− δ) ceramics. Mater Res Bull 48(1):58–62

    Article  Google Scholar 

  8. Wang X et al (2012) A simple route to disperse silver nanoparticles on the surfaces of silica nanofibers with excellent photocatalytic properties. Mater Res Bull 47(7):1734–1739

    Article  Google Scholar 

  9. Zhang Y et al (2013) Ag/BiPO 4 heterostructures: synthesis, characterization and their enhanced photocatalytic properties. Dalton Trans 42(36):13172–13178

    Article  Google Scholar 

  10. Bechmann R (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. The Journal of the Acoustical Society of America 28(3):347–350

    Article  Google Scholar 

  11. Berlincourt D, Jaffe H (1958) Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys Rev 111:143

    Article  Google Scholar 

  12. Dunn ML (1995) Effects of grain shape anisotropy, porosity, and microcracks on the elastic and dielectric constants of polycrystalline piezoelectric ceramics. J Appl Phys 78(3):1533–1541

    Article  Google Scholar 

  13. Rödel J, Kreher W (1999) Effective properties of polycrystalline piezoelectric ceramics. Le Journal de Physique IV 9(PR9):Pr9-239–Pr9-247

    Google Scholar 

  14. Den Toonder J, Van Dommelen J, Baaijens F (1999) The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation. Model Simul Mater Sci Eng 7(6):909

    Article  Google Scholar 

  15. Froehlich A, Brueckner-Foit A, and Weyer S (2000) Effective properties of piezoelectric polycrystals. Proc. SPIE 3992, Smart Structures and Materials: Active Materials: Behavior and Mechanics, pp 279–287. doi:10.1117/12.388212

  16. Dent A et al (2007) Effective elastic properties for unpoled barium titanate. J Eur Ceram Soc 27(13):3739–3743

    Article  Google Scholar 

  17. Duran P et al (2002) Densification behaviour, microstructure development and dielectric properties of pure BaTiO 3 prepared by thermal decomposition of (Ba, Ti)-citrate polyester resins. Ceram Int 28(3):283–292

    Article  Google Scholar 

  18. Arya PR et al (2003) Polymeric citrate precursor route to the synthesis of nano-sized barium lead titanates. Mater Res Bull 38(4):617–628

    Article  Google Scholar 

  19. Buscaglia V et al (2004) Nanostructured barium titanate ceramics. Powder Technol 148(1):24–27

    Article  MathSciNet  Google Scholar 

  20. Boulos M et al (2005) Hydrothermal synthesis of nanosized BaTiO 3 powders and dielectric properties of corresponding ceramics. Solid State Ionics 176(13):1301–1309

    Article  Google Scholar 

  21. Stojanovic B et al (2005) Ferroelectric properties of mechanically synthesized nanosized barium titanate. Ferroelectrics 319(1):65–73

    Article  Google Scholar 

  22. Vinothini V, Singh P, Balasubramanian M (2006) Synthesis of barium titanate nanopowder using polymeric precursor method. Ceram Int 32(2):99–103

    Article  Google Scholar 

  23. Simon-Seveyrat L et al (2007) Re-investigation of synthesis of BaTiO 3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications. Ceram Int 33(1):35–40

    Article  Google Scholar 

  24. Zgonik M et al (1994) Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO 3 crystals. Phys Rev B 50(9):5941

    Article  Google Scholar 

  25. Arlt G, Hennings D (1985) Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys 58(4):1619–1625

    Article  Google Scholar 

  26. Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications. Wiley

  27. Guo L et al (2006) Microwave hydrothermal synthesis of barium titanate powders. Mater Lett 60(24):3011–3014

    Article  Google Scholar 

  28. Zhao Z et al (2004) Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO 3 ceramics. Phys Rev B 70(2):024107

    Article  Google Scholar 

  29. Kim HT, Han YH (2004) Sintering of nanocrystalline BaTiO 3. Ceram Int 30(7):1719–1723

    Article  Google Scholar 

  30. Karaki T et al (2007) Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn J Appl Phys 46(2L):L97

    Article  Google Scholar 

  31. Ren P et al (2011) Effects of silver addition on microstructure and electrical properties of barium titanate ceramics. J Alloys Compd 509(22):6423–6426

    Article  Google Scholar 

  32. Shi J et al (2015) Bi deficiencies induced high permittivity in lead-free BNBT–BST high-temperature dielectrics. J Alloys Compd 627:463–467

    Article  Google Scholar 

  33. Liu G et al (2016) Colossal permittivity and impedance analysis of niobium and aluminum co-doped TiO 2 ceramics. RSC Adv 6(54):48708–48714

    Article  Google Scholar 

  34. Liu Z et al (2017) Duplex structure in K 0.5 Na 0.5 NbO 3-SrZrO 3 ceramics with temperature-stable dielectric properties. J Eur Ceram Soc 37(1):115–122

    Article  Google Scholar 

  35. Böhm HJ (2013) A short introduction to basic aspects of continuum micromechanics. Cdl-fmd Report 3

  36. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society

  37. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  38. Hill R (1965) A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13(4):213–222

    Article  Google Scholar 

  39. Rasool A, Böhm HJ (2012) Effects of particle shape on the macroscopic and microscopic linear behaviors of particle reinforced composites. Int J Eng Sci 58:21–34

    Article  Google Scholar 

  40. Tajeddini V et al (2014) Average electo-mechanical properties and responses of active composites. Comput Mater Sci 82:405–414

    Article  Google Scholar 

  41. Langer SA, Fuller ER Jr, Carter WC (2001) OOF: image-based finite-element analysis of material microstructures. Computing in Science & Engineering 3(3):15–23

    Article  Google Scholar 

  42. Gudlur P et al (2014) On characterizing the mechanical properties of aluminum–alumina composites. Mater Sci Eng A 590:352–359

    Article  Google Scholar 

  43. Gudlur P, Muliana A, Radovic M (2014) Effective thermo-mechanical properties of aluminum–alumina composites using numerical approach. Compos Part B 58:534–543

    Article  Google Scholar 

  44. Gudlur P, Muliana A, Radovic M (2014) The effect of microstructural morphology on the elastic, inelastic, and degradation behaviors of aluminum–alumina composites. Mech Res Commun 57:49–56

    Article  Google Scholar 

  45. Muliana AH (2010) A micromechanical formulation for piezoelectric fiber composites with nonlinear and viscoelastic constituents. Acta Mater 58(9):3332–3344

  46. Xing J, Radovic M, and Muliana A (2016) Thermal properties of BaTiO 3/Ag composites at different temperatures. Composites Part B: Engineering

  47. Radovic M, Lara-Curzio E, Riester L (2004) Comparison of different experimental techniques for determination of elastic properties of solids. Mater Sci Eng A 368(1):56–70

    Article  Google Scholar 

  48. Gudlur P et al (2012) Thermal and mechanical properties of Al/Al< sub> 2</sub> O< sub> 3</sub> composites at elevated temperatures. Mater Sci Eng A 531:18–27

    Article  Google Scholar 

  49. Flynn K, Radovic M (2011) Evaluation of defects in materials using resonant ultrasound spectroscopy. J Mater Sci 46(8):2548–2556

    Article  Google Scholar 

  50. Cheng B et al (1996) Mechanical loss and Young's modulus associated with phase transitions in barium titanate based ceramics. J Mater Sci 31(18):4951–4955

    Article  Google Scholar 

  51. Marutake M (1956) A calculation of physical constants of ceramic barium titanate. J Phys Soc Jpn 11(8):807–814

    Article  Google Scholar 

  52. Roberts S (1947) Dielectric and piezoelectric properties of barium titanate. Phys Rev 71(12):890

    Article  Google Scholar 

  53. Nguyen V-D et al (2012) Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput Mater Sci 55:390–406

    Article  Google Scholar 

  54. Jiang M, Jasiuk I, Ostoja-Starzewski M (2002) Apparent thermal conductivity of periodic two-dimensional composites. Comput Mater Sci 25(3):329–338

    Article  MATH  Google Scholar 

  55. Keip M-A, Steinmann P, Schröder J (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79

    Article  MathSciNet  Google Scholar 

  56. Schröder J, Labusch M, Keip M-A (2016) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: localization and homogenization. Comput Methods Appl Mech Eng 302:253–280

    Article  Google Scholar 

  57. Pahr DH, Zysset PK (2008) Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech Model Mechanobiol 7(6):463–476

    Article  Google Scholar 

  58. Lin CH, Muliana A (2014) Polarization Switching Responses of 1-3 and 0-3 Active Composites. Compos Struct 116:535–551

Download references

Acknowledgements

Part of this research is sponsored by the National Science Foundation under grant CMMI-1437086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Muliana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Radovic, M. & Muliana, A.H. Elastic and Dielectric Properties of Active Ag/BaTiO3 Composites. Exp Mech 58, 645–660 (2018). https://doi.org/10.1007/s11340-017-0271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0271-5

Keywords

Navigation