Skip to main content
Log in

Effect of Tetraethylenepentamine on Silver Conductive Adhesive

  • Functional Materials for Printed, Flexible and Wearable Electronics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The use of electrically conductive adhesive (ECA) reduces the harm of traditional soldering technology, removes defects and improves reliability during the soldering process. ECAs are manufactured using different curing agents. The different curing agents have a strong effect on the curing temperature and reliability. Some ECAs require high temperatures for curing, which could damage temperature-sensitive components. In this article, we report on a curing agent named tetraethylenepentamine that results in a low curing temperature of silver conductive adhesive. By comparing two different curing agents, the use of tetraethylenepentamine was found to lower the curing temperature of silver conductive adhesive. Not only does this conductive adhesive have a low curing temperature, but it also can provide high electrical conductivity, matching other high-performance ECAs. Furthermore, DTA analysis also confirms that the use of tetraethylenepentamine results in a lower ECA curing temperature. The present study establishes that the use of tetraethylenepentamine could reduce the curing temperature of silver conductive adhesive, and the results are promising to minimize damage to materials and equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zemen, S.C. Schulz, H. Trommler, S.T. Buschhorn, W. Bauhofer, and K. Schulte, Sol. Energy Mat. Sol. C. 109, 155 (2013).

    Article  Google Scholar 

  2. A.M. Gabor, M. Ralli, S. Montminy, L. Alegria, C. Bordonaro, J. Woods, L. Felton, M. Davis, B. Atchley, and T. Williams, 21st Eur. Photovolt. Sol. Energy C., Dresden (2006).

  3. Y.S. Eom, K.S. Choi, S.H. Moon, J.H. Park, J.H. Lee, and J.T. Moon, ETRI J. 33, 864 (2011).

    Article  Google Scholar 

  4. P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, and J.D. Joannopoulos, Opt. Express 15, 16986 (2007).

    Article  Google Scholar 

  5. A. Goetzberger, J. Luther, and G. Willeke, Sol. Energy Mat. Sol. C. 74, 1 (2002).

    Article  Google Scholar 

  6. P.J. Ribeyron, D. Munoz, J.P. Kleider, P.R. Cabarrocas, W.V. Sark, J.K. Rath, and L. Korte, 26th Eur. Photovolt. Sol. Energy C., 853 (2011).

  7. J. Wendt, M. Träger, M. Mette, A. Pfennig, and B. Jäckel, 24th Eur. Photovolt. Sol. Energy C., Hamburg, Germany, 3420 (2009).

  8. Y. Zemen, T. Prewitz, T. Geipel, S. Pingel, and J. Berghold, 25th Eur. Photovolt. Sol. Energy C., Valencia, Spain, 4073 (2010).

  9. M. Grätzel, Nat. Mat. 13, 838 (2014).

    Article  Google Scholar 

  10. C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mat. 23, 595 (1994).

    Article  Google Scholar 

  11. H.K. Kim and F.G. Shi, Microelectron. J. 32, 315 (2001).

    Article  Google Scholar 

  12. B.S. Yim and J.M. Kim, Microelectron. Reliab. 57, 93 (2016).

    Article  Google Scholar 

  13. D. Wojciechowski, J. Vanfleteren, E. Reese, and H.W. Hagedorn, Microelectron. Reliab. 40, 1215 (2000).

    Article  Google Scholar 

  14. D. Lu, Y. Sun, and C. P. Wong. W. Enc. Electr. Electron. Eng., 1 (2013).

  15. W. Lin, X. Xi, and C. Yu, Synthetic Met. 159, 619 (2009).

    Article  Google Scholar 

  16. C.A. Lu, P. Lin, H.C. Lin, and S.F. Wang, Jpn. J. Appl. Phys. 45, 6987 (2006).

    Article  Google Scholar 

  17. B.S. Yim and J.M. Kim, Mater. Trans. 51, 2329 (2010).

    Article  Google Scholar 

  18. R. Zhang, A. Dowden, H. Deng, M. Baxendale, and T. Peijs, Compos. Sci. Technol. 69, 1499 (2009).

    Article  Google Scholar 

  19. C. Zhang, P. Wang, C.A. Ma, G.Z. Wu, and M. Sumita, Polymer 47, 466 (2006).

    Article  Google Scholar 

  20. D. Lu, Q.K. Tong, and C.P. Wong. Proc. Int. Symp. IEEE, 2 (1999).

  21. S. Sourour and M.R. Kamal, Thermochim. Acta 14, 41 (1976).

    Article  Google Scholar 

  22. D. Lu and C.P. Wong, Int. J. Adhes. Adhes. 20, 189 (2000).

    Article  Google Scholar 

  23. X. Kornmann, H. Lindberg, and L.A. Berglund, Polymer 42, 4493 (2001).

    Article  Google Scholar 

  24. D. Ren, M. Mills, M. DeGroot, L. Clark, and S. Brown, J. Curphy. Sol. Energy Mat. Sol. C. 107, 403 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XQ., Gan, WP., Ge, TT. et al. Effect of Tetraethylenepentamine on Silver Conductive Adhesive. JOM 70, 1800–1804 (2018). https://doi.org/10.1007/s11837-018-2939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2939-4

Navigation