Skip to main content
Log in

Electrolytic Production of Ti5Si3/TiC Composites by Solid Oxide Membrane Technology

  • Toward Resources and Processes Sustainability: Part I
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper investigated the electrolytic production of Ti5Si3/TiC composites from TiO2/SiO2/C in molten CaCl2. The solid-oxide oxygen-ion-conducting membrane tube filled with carbon-saturated liquid tin was served as the anode, and the pressed spherical TiO2/SiO2/C pellet was used as the cathode. The electrochemical reduction process was carried out at 1273 K and 3.8 V. The characteristics of the obtained cathode products and the reaction mechanism of the electroreduction process were studied by a series of time-dependent electroreduction experiments. It was found that the electroreduction process generally proceeds through the following steps: TiO2/SiO2/C → Ti2O3, CaTiO3, Ca2SiO4, SiC → Ti5Si3, TiC. The morphology observation and the elemental distribution analysis indicate that the reaction routes for Ti5Si3 and TiC products are independent during the electroreduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Sandwick and K. Rajan, J. Electr. Mater. 19, 1193 (1990).

    Article  Google Scholar 

  2. L.J. Wang, W. Jiang, C. Qin, and L. Chen, J. Mater. Sci. 41, 3831 (2006).

    Article  Google Scholar 

  3. P.J. Counihan, A. Crawford, and N.N. Thadhani, Mater. Sci. Eng. A 267, 26 (1999).

    Article  Google Scholar 

  4. K. Kishida, M. Fujiwara, H. Adachi, K. Tanaka, and H. Inui, Acta Mater. 58, 846 (2010).

    Article  Google Scholar 

  5. L. Zhang and J. Wu, Acta Mater. 46, 3535 (1998).

    Article  Google Scholar 

  6. Z. Tang, J.J. Williams, A.J. Thom, and M. Akinc, Intermetallics 16, 1118 (2008).

    Article  Google Scholar 

  7. R. Mitra, Metall. Mater. Trans. A 29A, 1629 (1998).

    Article  Google Scholar 

  8. X. Zou, X. Lu, Z. Zhou, and C. Li, Electrochem. Commun. 9, 21 (2012).

    Google Scholar 

  9. A.K. Vasude and J.J. Petrovic, Mater. Sci. Eng. A 155, 1 (1992).

    Article  Google Scholar 

  10. Z. Lin, M. Zhuo, Y. Zhou, M. Li, and J. Wang, Script. Mater. 55, 445 (2006).

    Article  Google Scholar 

  11. J. Xu, L. Liu, L. Jiang, P. Munroe, and Z.H. Xie, Ceram. Int. 39, 9471 (2013).

    Article  Google Scholar 

  12. J. Li, D. Jiang, and S. Tan, J. Eur. Ceram. Soc. 22, 551 (2002).

    Article  Google Scholar 

  13. X. Zou, S. Li, X. Lu, Q. Xu, C. Chen, S. Guo, and Z. Zhou, Mater. Trans. 3, 331 (2017).

    Article  Google Scholar 

  14. E.S. Gratz, X.F. Guan, J.D. Milshtein, U.B. Pal, and A.C. Powell, Metall. Mater. Trans. B 45, 1326 (2014).

    Article  Google Scholar 

  15. X.F. Guan, U.B. Pal, and A.C. Powell, Metall. Mater. Trans. E 1, 132 (2014).

    Google Scholar 

  16. A. Martin, D. Lambertin, J.-C. Poignant, M. Allibert, G. Bourges, L. Pescayre, and J. Fouletier, JOM 55, 52 (2003).

    Article  Google Scholar 

  17. X.F. Guan, P.A. Zink, U.B. Pal, and A.C. Powell, Metall. Mater. Trans. B 44, 262 (2013).

    Article  Google Scholar 

  18. U.B. Pal, D.E. Woolley, and G.B. Kenney, JOM 53, 32 (2001).

    Article  Google Scholar 

  19. X. Zou, K. Zheng, X. Lu, Q. Xu, and Z. Zhou, Faraday Discuss. 190, 53 (2016).

    Article  Google Scholar 

  20. X. Zou, X. Lu, C. Li, and Z. Zhou, Electrochim. Acta 55, 5173 (2010).

    Article  Google Scholar 

  21. A. Krishnan, X.G. Lu, and U.B. Pal, Scand. J. Metall. 34, 293 (2005).

    Article  Google Scholar 

  22. X. Zou, X. Lu, Z. Zhou, C. Li, and W. Ding, Electrochim. Acta 56, 8430 (2011).

    Article  Google Scholar 

  23. X.F. Guan, U.B. Pal, and A.C. Powell, JOM 65, 1286 (2013).

    Article  Google Scholar 

  24. X. Zou, X. Lu, Z. Zhou, W. Xiao, Q. Zhong, C. Li, and W. Ding, J. Mater. Chem. A 2, 7421 (2014).

    Article  Google Scholar 

  25. X. Zou and X. Lu, J. Manuf. Sci. Prod. 13, 55 (2013).

    Google Scholar 

  26. X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding, and Z. Zhou, Metall. Mater. Trans. B 43, 503 (2012).

    Article  Google Scholar 

  27. X. Zou, C. Chen, X. Lu, S. Li, Q. Xu, Z. Zhou, and W. Ding, Metall. Mater. Trans. B 48B, 664 (2017).

    Article  Google Scholar 

  28. X. Zou, X. Li, B. Shen, X. Lu, Q. Xu, Z. Zhou, and W. Ding, Metall. Mater. Trans. B 48, 680 (2017).

    Google Scholar 

  29. W. Xiao, X. Wang, H.Y. Yin, H. Zhu, X.H. Mao, and D.H. Wang, RSC Adv. 2, 7589 (2012).

    Google Scholar 

Download references

Acknowledgements

The authors thank The National Natural Science Foundation of China (Nos. 51574164, and 51664005) and the National Basic Research Program of China (No. 2014CB643403) for financial support. We also thank the Instrumental Analysis and Research Center of Shanghai University for materials characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingli Zou or Xionggang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Zou, X., Xie, X. et al. Electrolytic Production of Ti5Si3/TiC Composites by Solid Oxide Membrane Technology. JOM 70, 138–143 (2018). https://doi.org/10.1007/s11837-017-2693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2693-z

Navigation