Skip to main content
Log in

Wolframite Conversion in Treating a Mixed Wolframite–Scheelite Concentrate by Sulfuric Acid

  • Toward Resources and Processes Sustainability: Part I
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite–scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite–scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.H. Yang, R.R. Srivastava, M.S. Kim, D.D. Nam, J.C. Lee, and T.H. Hai, Met. Mater. Int. 22, 897 (2016).

    Article  Google Scholar 

  2. E. Lassner, W. Schubert, E. Lüderitz, and H.U. Wolf, Tungsten, Tungsten Alloys, and Tungsten Compounds. Ullmann’s Encyclopedia of Industrial Chemistry (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012). https://doi.org/10.1002/14356007.a27_229.

    Google Scholar 

  3. R.P.S. Gaur, JOM 58, 45 (2006).

    Article  Google Scholar 

  4. E. Lassner, Int. J. Refract. Met. Hard Mater. 13, 35 (1995).

    Article  Google Scholar 

  5. J.I. Martins, Min. Proc. Ext. Met. Rev. 35, 23 (2014).

    Article  Google Scholar 

  6. K. Vadasdi, Int. J. Refract. Met. Hard Mater. 13, 45 (1995).

    Article  Google Scholar 

  7. Y.M. Potashnikov, A.M. Gamol’skii, and M.V. Mokhosoev, F.M. Zh. Neorg. Khim. 15, 502 (1970).

    Google Scholar 

  8. A.O. Kalpakli, S. Ilhan, C. Kahruman, and I. Yusufoglu, Hydrometallurgy 121–124, 7 (2012).

    Article  Google Scholar 

  9. G.H. Xuin, D.Y. Yu, and Y.F. Su, Hydrometallurgy 16, 27 (1986).

    Article  Google Scholar 

  10. S. Gurmen, S. Timur, C. Arslan, and I. Duman, Hydrometallurgy 51, 227 (1999).

    Article  Google Scholar 

  11. J.T. Li and Z.W. Zhao, Hydrometallurgy 163, 55 (2016).

    Article  Google Scholar 

  12. J.I. Martins, A. Moreira, and S.C. Costa, Hydrometallurgy 70, 131 (2003).

    Article  Google Scholar 

  13. J.I. Martins, Ind. Eng. Chem. Res. 42, 5031 (2003).

    Article  Google Scholar 

  14. F.A. Forward, and A.I. Vizsolyi, United States Patent, No. 3193347 (1965).

  15. X.B. Li, L.T. Shen, Q.S. Zhou, Z.H. Peng, G.H. Liu, and T.G. Qi, Hydrometallurgy 171, 106 (2017).

    Article  Google Scholar 

  16. A.N. Zelikman, A.S. Medvedev, and Z.O. Kadyrova, Izv. V.U.Z. Tsvetn. Metall. 3, 69 (1986).

    Google Scholar 

  17. H. Xie, The novel technology of extracting wolframite with sulfuric acid, (Changsha, Master of Science Thesis, Central South University, China 2011) (in Chinese).

  18. S.S. Al-Jaroudi, A. Ul-Hamid, A.R.I. Mohammed, and S. Saner, Powder Technol. 175, 115 (2007).

    Article  Google Scholar 

  19. X.B. Li, X.M. Xu, Q.S. Zhou, Z.H. Peng, G.H. Liu, and T.G. Qi, et al., Int. J. Refract. Met. Hard Mater. 52, 151 (2015).

    Article  Google Scholar 

  20. S.C. Srivastava, S.R. Bhaisare, D.N. Wagh, and C.P.S. Iyer, Bull. Mater. Sci. 19, 331 (1996).

    Article  Google Scholar 

  21. A. Roine, HSC Chemistry, vers. 9.0, Outotec Research Oy, Pori (Finland), Mar. 2016. http://www.outotec.com/products/digital-solutions/hsc-chemistry/.

  22. C. Horner, Chem. Geol. 27, 85 (1979).

    Article  Google Scholar 

  23. J.G. Speight, Lange’s Handbook of Chemistry, 16th ed. (New York: McGraw-Hill Book Co., 2005) (Sec. one.).

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51274243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Li, X., Zhou, Q. et al. Wolframite Conversion in Treating a Mixed Wolframite–Scheelite Concentrate by Sulfuric Acid. JOM 70, 161–167 (2018). https://doi.org/10.1007/s11837-017-2691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2691-1

Navigation