Skip to main content
Log in

Comparison of Interfacial Strengthening in Creep Deformation and Radiation Damage Processes of Advanced Structural Materials for Nuclear Applications

  • Technical Communication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanisms for microstructural strengthening in creep deformation and radiation damage processes of advanced structural materials for nuclear applications are compared. During creep and irradiation, various defects are generated and move in the microstructure. Any microstructural features that can retard such defect movement may improve both creep and radiation damage resistance. Interfaces in the microstructure are important barriers for preventing defect motion. To achieve ultrahigh strength and enhanced radiation damage resistance, an extremely high density of interfaces has been designed in recently developed nanostructured materials. However, interface-mediated processes may govern the deformation of these materials, decreasing their creep properties. Methods for improving the creep resistance of nanostructured materials are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.J. Zinkle and T. Busby, Mater. Today 12, 12 (2009).

    Article  Google Scholar 

  2. I. Charit and K.L. Murty, JOM 62, 67 (2010).

    Article  Google Scholar 

  3. W. Hoffelner, J. Mater. Sci. 45, 2247 (2010).

    Article  Google Scholar 

  4. H. Zhu, T. Wei, D. Carr, R. Harrison, L. Edwards, D. Seo, K. Maruyama, and M.S. Dargusch, Curr. Opin. Solid State Mater. Sci. 18, 269 (2014).

    Article  Google Scholar 

  5. I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Prog. Mater Sci. 74, 125 (2015).

    Article  Google Scholar 

  6. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM 59, 62 (2007).

    Article  Google Scholar 

  7. N. Li, M.S. Martin, O. Anderoglu, A. Misra, L. Shao, H. Wang, and X. Zhang, J. Appl. Phys. 105, 123522 (2009).

    Article  Google Scholar 

  8. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater Sci. 51, 427 (2006).

    Article  Google Scholar 

  9. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer, 2007).

    Google Scholar 

  10. S.J. Zinkle and N.M. Ghoniem, Fusion Eng. Des. 51–52, 55 (2000).

    Article  Google Scholar 

  11. H. Zhu, K. Maruyama, and D.Y. Seo, Appl. Phys. Lett. 90, 171925 (2007).

    Article  Google Scholar 

  12. E.A. Little, Mater. Sci. Technol. 22, 491 (2006).

    Article  Google Scholar 

  13. L.K. Mansur, JOM 48, 28 (1996).

    Article  Google Scholar 

  14. R.W. Grimes, R.J.M. Konings, and L. Edwards, Nat. Mater. 7, 683 (2008).

    Article  Google Scholar 

  15. G.R. Odette, M.J. Alinger, and B.D. Wirth, Ann. Rev. Mater. Res. 38, 471 (2008).

    Article  Google Scholar 

  16. N.V. Doan and G. Martin, Phys. Rev. B 67, 134107 (2003).

    Article  Google Scholar 

  17. I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, and R. Kaibyshev, Mater. Sci. Eng. A 615, 153 (2014).

    Article  Google Scholar 

  18. K. Yabuuchi, K. Sato, S. Nogami, A. Hasegawa, M. Ando, and H. Tanigawa, J. Nucl. Mater. 455, 690 (2014).

    Article  Google Scholar 

  19. C.Y. Cui, Y.F. Gu, Y. Yuan, T. Osada, and H. Harada, Mater. Sci. Eng. 528, 5465 (2011).

    Article  Google Scholar 

  20. Y.F. Gu, C. Cui, H. Harada, T. Fukuda, D. Ping, A. Mitsuhashi, K. Kato, T. Kobayashi, and J. Fujioka, Superalloys, ed. R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard (Pittsburgh, PA: TMS, 2008), p. 53.

    Google Scholar 

  21. N. Yamamoto, J. Nagakawa, Y. Murase, and H. Shiraishi, J. Nucl. Mater. 258–263, 1628 (1998).

    Article  Google Scholar 

  22. F. Abe, Sci. Technol. Adv. Mater. 9, 013002 (2008).

    Article  Google Scholar 

  23. L.X. Yang, S.J. Zheng, Y.T. Zhou, J. Zhang, Y.Q. Wang, C.B. Jiang, N.A. Mara, I.J. Beyerlein, and X.L. Ma, J. Nucl. Mater. 487, 311 (2017).

    Article  Google Scholar 

  24. M.A. Monclús, S.J. Zheng, J.R. Mayeur, I.J. Beyerlein, N.A. Mara, T. Polcar, J. Llorca, and J.M. Molina-Aldareguía, APL Mater. 1, 052103 (2013).

    Article  Google Scholar 

  25. X.Y. Zhu, J.T. Luo, G. Chen, F. Zeng, and F. Pan, J. Alloys Compd. 506, 434 (2010).

    Article  Google Scholar 

  26. X.Y. Zhu, X.J. Liu, R.L. Zong, F. Zeng, and F. Pan, Mater. Sci. Eng. A 527, 1243 (2010).

    Article  Google Scholar 

  27. S.P. Wen, F. Zeng, Y. Gao, and F. Pan, Scr. Mater. 55, 187 (2006).

    Article  Google Scholar 

  28. A.C. Lewis, D.V. Heerden, D. Josell, and T.P. Weihs, JOM 55, 34 (2003).

    Article  Google Scholar 

  29. N.A. Mara, A. Misra, R.G. Hoagland, A.V. Sergueeva, T. Tamayo, P. Dickerson, and A.K. Mukherjee, Mater. Sci. Eng. A 493, 274 (2008).

    Article  Google Scholar 

  30. H. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Metall. Mater. Trans. A 36, 1339 (2005).

    Article  Google Scholar 

  31. G. Wegmann and K. Maruyama, Philos. Mag. A 80, 2283 (2003).

    Article  Google Scholar 

  32. S.B. Wang, X.F. Chang, and J. Key, Mater. Charact. 127, 1 (2017).

    Article  Google Scholar 

  33. M. Klimenkov, A. Möslang, E.M. Morris, and H.C. Schneider, J. Nucl. Mater. 442, S52 (2013).

    Article  Google Scholar 

  34. L.K. Mansur and E.H. Lee, J. Nucl. Mater. 179–181, 105 (1991).

    Article  Google Scholar 

  35. H. Zhu, T. Wei, R. Harrison, L. Edwards, and K. Maruyama, Engineering Asset Management and Infrastructure Sustainability, ed. J. Mathew, M. Ma, A. Tan, M. Weijnen, and J. Lee (London: Springer, 2011), p. 1147.

    Google Scholar 

  36. C. Lu, Z. Lu, R. Xie, C. Liu, and L. Wang, J. Nucl. Mater. 474, 65 (2016).

    Article  Google Scholar 

  37. T. Hayashi, P.M. Sarosi, J.H. Schneibel, and M.J. Mills, Acta Mater. 56, 1407 (2008).

    Article  Google Scholar 

  38. M.S.E. Genk and J.M. Tournier, J. Nucl. Mater. 340, 93 (2005).

    Article  Google Scholar 

  39. M. Song, K. Mitsuishi, M. Takeguchi, K. Furuya, T. Tanabe, and T. Noda, J. Nucl. Mater. 307–311, 971 (2002).

    Article  Google Scholar 

  40. G. Yu, N. Nita, and N. Baluc, Fusion Eng. Des. 75–79, 2005 (1037).

    Google Scholar 

  41. A. Steckmeyer, V.H. Rodrigo, J.M. Gentzbittel, V. Rabeau, and B. Fournier, J. Nucl. Mater. 426, 182 (2012).

    Article  Google Scholar 

  42. B. Wilshire and T. Lieu, Mater. Sci. Eng. A 386, 81 (2004).

    Article  Google Scholar 

  43. V.V. Sagaradze, V.I. Shalaev, V.L. Arbuzov, B.N. Goshchitskii, T. Yun, Q. Wan, and J.G. Sun, J. Nucl. Mater. 295, 265 (2001).

    Article  Google Scholar 

  44. D. Mukhopadhyay, F. Froes, and D. Gelles, J. Nucl. Mater. 258, 1209 (1998).

    Article  Google Scholar 

  45. J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P. Sarosi, M. Heilmaier, and D. Sturm, Scr. Mater. 61, 793 (2009).

    Article  Google Scholar 

  46. A.I. Ryazanov, O.K. Chugunov, S.M. Ivanov, S.T. Latushkin, R. Lindau, A. Moslang, A.A. Nikitina, K.E. Prikhodko, E.V. Semenov, V.N. Unezhev, and P.V. Vladimirov, J. Nucl. Mater. 442, S153 (2013).

    Article  Google Scholar 

  47. A. Wisniewski and J. Beddoes, Mater. Sci. Eng. A 510–511, 266 (2009).

    Article  Google Scholar 

  48. H. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Mater. Trans. 45, 3343 (2004).

    Article  Google Scholar 

  49. H. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Metall. Mater. Trans. A 37, 3149 (2006).

    Article  Google Scholar 

  50. C.D. Judge, N. Gauquelin, L. Walters, M. Wright, J.I. Cole, J. Madden, G.A. Botton, and M. Griffiths, J. Nucl. Mater. 457, 165 (2015).

    Article  Google Scholar 

  51. C. Sun, M. Song, K.Y. Yu, Y. Chen, M. Kirk, M. Li, H. Wang, and X. Zhang, Metall. Mater. Trans. A 44, 1966 (2013).

    Article  Google Scholar 

  52. E. Gürses and T.E. Sayed, Int. J. Solids Struct. 48, 1610 (2011).

    Article  Google Scholar 

  53. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu, Science 355, 1292 (2017).

    Article  Google Scholar 

  54. T.G. Langdon, J. Mater. Sci. 41, 597 (2006).

    Article  Google Scholar 

  55. W.M. Yin, S.H. Whang, and R.A. Mirshams, Acta Mater. 53, 383 (2005).

    Article  Google Scholar 

  56. V. Sklenicka, K. Kucharova, M. Kvapilova, M. Svoboda, P. Kral, and G. Vidrich, J. Mater. Sci. 48, 4780 (2013).

    Article  Google Scholar 

  57. A. Kostka, K.-G. Tak, R.J. Hellmig, Y. Estrin, and G. Eggeler, Acta Mater. 55, 539 (2007).

    Article  Google Scholar 

  58. S. Karthikeyan, G.B. Viswanathan, P.I. Gouma, V.K. Vasudevan, Y.-W. Kim, and M.J. Mills, Mater. Sci. Eng. A 329–331, 621 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanliang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H. Comparison of Interfacial Strengthening in Creep Deformation and Radiation Damage Processes of Advanced Structural Materials for Nuclear Applications. JOM 70, 219–228 (2018). https://doi.org/10.1007/s11837-017-2677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2677-z

Navigation