Skip to main content
Log in

Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling

  • Accident Tolerant Nuclear Fuels and Cladding Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Three methods were used to measure the mechanical properties of \({\text{U}}_{3}{\text{Si}}\), \({\text{U}}_3{\text{Si}}_{2}\), and USi. Quasi-static and continuous stiffness measurement nanoindentation were used to determine hardness and Young’s modulus, and microindentation was used to evaluate the bulk hardness. Hardness and Young’s modulus of the three U-Si compounds were both observed to increase with Si content. Finally, finite elements modelling was used to validate the nanoindentation data calculated for \({\text{U}}_{3}{\text{Si}}_{2}\) and estimate its yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.T. White, A.T. Nelson, D.D. Byler, J.A. Valdez, and K.J. McClellan, J. Nucl. Mater. 452(13), 304 (2014).

    Article  Google Scholar 

  2. J.T. White, A.T. Nelson, J.T. Dunwoody, D.D. Byler, D.J. Safarik, and K.J. McClellan, J. Nucl. Mater. 464, 275 (2015).

    Article  Google Scholar 

  3. J.T. White, A.T. Nelson, J.T. Dunwoody, D.D. Byler, and K.J. McClellan, J. Nucl. Mater. 471, 129 (2016).

    Article  Google Scholar 

  4. M.J. Snyder and W.H. Duckworth, Battelle Memorial Institute and US Atomic Energy Commission, Properties of Some Refractory Uranium Compounds, BMI Series (Battelle Memorial Institute, 1957).

  5. A. Kaufmann, B. Cullity, and G. Bitsianes, J. Met. 9, 23 (1957).

    Google Scholar 

  6. K.M. Taylor and C.H. McMurtry, Synthesis and Fabrication of Refractory Uranium Compounds (Springer, Niagara Falls, NY, 1961).

    Google Scholar 

  7. H. Shimizu, The Properties and Irradiation Behavior of \({\text{U}}_{3}{\text{Si}}_{2}\), Tech. Rep. NAA-SR-10621 (Atomics International, 1695).

  8. M. Rosen, Y. Gefen, G. Kimmel, and A. Halwany, Philos. Mag. 28(5), 1007 (1973).

    Article  Google Scholar 

  9. R.F. Domagala, T.C. Wieneck, and H.R. Thresh, Argonne National Lab. Department of Energy. Office of Scientific and Technical Information, 1984.

  10. J.M. Harp, P.A. Lessing, and R.E. Hoggan, J. Nucl. Mater. 466, 728 (2015).

    Article  Google Scholar 

  11. K.E. Metzger, T.W. Knight, E. Roberts, and X. Huang, Prog. Nucl. Energy, 99, 147 (2017).

    Article  Google Scholar 

  12. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7(6), 1564 (1992).

    Article  Google Scholar 

  13. Karlsson and Sorensen, ABAQUS Version 6.11.1. Hibbitt, Inc., Pawtucket, RI.

  14. M.S. Elbakhshwan, Y. Miao, J.F. Stubbins, and B.J. Heuser, J. Nucl. Mater. 479, 548 (2016).

    Article  Google Scholar 

  15. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, and T.A. Friedmann, J. Appl. Phys. 85(3), 1460 (1999).

    Article  Google Scholar 

  16. A.C. Fischer-Cripps, Examples of Nanoindentation Testing (Springer, Berlin, 2002), pp. 159–173.

    Google Scholar 

  17. U. Carvajal-Nunez, T.A. Saleh, J.T. White, B.A. Maiorov, and A.T. Nelson, J. Nucl. Mater. (2017)

  18. T. Wang, N. Qiu, X. Wen, Y. Tian, J. He, K. Luo, X. Zha, Y. Zhou, Q. Huang, J. Lang, and S. Du, J. Nucl. Mater. 469, 194 (2016).

    Article  Google Scholar 

  19. K.E. Metzger, T.W Knight, and R.L. Williamson, ICAPP 2014, Charlotte, NC, USA (2014)

  20. S. Nazare, Investigations of Uranium Silicide-Based Dispersion Fuels for the Use of Low Enrichment Uranium (LEU) in Research and Test Reactors (Kernforschungszentrum Karlsruhe Gmb, Hamburg, Germany, 1982).

    Google Scholar 

  21. V.S. Yemel’Yanov and A.I. Yevstyukhin, The Metallurgy of Nuclear Fuel: Properties and Principles of the Technology of Uranium, Thorium and Plutonium (Elsevier, Amsterdam, 2013).

    Google Scholar 

  22. H. Kato, T. Makoto, and I. Kenji, Trans. JWRI 35, 1 (2006).

    Google Scholar 

  23. L.C. Berthiaume, Chalk River, Ont.: Atomic Energy of Canada Limited, 1969.

  24. Atomic Energy of Canada Limited and B.S. Wyatt, Metallurgical Structures in a High Uranium-Silicon Alloy (Chalk River, Ontario, 1968).

  25. J.L. Snelgrove, R.F. Domagala, G.L. Hofman, and T.C. Wiencek, Evaluation of Low-Enriched Uranium Silicide-Aluminium Dispersion Fuel for Use in Non-Power Reactors (International Atomic Energy Agency, Vienna, 1988).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development Program. Part of the research was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The authors wish to thank Dr. Jordan Weaver at Los Alamos National laboratory and Dr. Bill Mook at Sandia National Laboratory for scientific input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Carvajal-Nunez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvajal-Nunez, U., Elbakhshwan, M.S., Mara, N.A. et al. Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling. JOM 70, 203–208 (2018). https://doi.org/10.1007/s11837-017-2667-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2667-1

Navigation