Skip to main content
Log in

Effect of Indentation Size and Strain Rate on Nanomechanical Behavior of Ti-6Al-4VAlloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nanoindentation experiments were carried out at strain rates of 0.05, 0.10, 0.15 and 0.20/s at indentation depths of 1000, 1500 and 2000 nm to investigate the nanomechanical behaviour of Ti-6Al-4V alloy. The strain rate had little influence on nanohardness, however, nanohardness as well as Young’s modulus gradually decreased with the increase of indentation depth indicating strong indentation size effects. The relation between H2 and 1/h exhibited a good linear relationship, and it is observed that the effect of strain gradient on σ/σ0 is significant at high strain rates according to Nix and Gao strain gradient model. The analysis of plastic behaviour revealed that, strain rates had no significant effect on strain hardening exponent, but had little influence on yield stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A proj :

Projected Area.nm2

b :

Burgers vector, nm

C :

Loading curvature

D :

Damage Variable

E* :

Reduced Young’s modulus, GPa

E :

Specimen Young’s modulus from Nanoindentation GPa,

E u :

Young’s modulus of undamaged material, GPa

H :

Hardness, GPa

H 0 :

Nanoindentation hardness for a large indentation depth, GPa

h :

Indentation depth, nm

h* :

Characteristic length, nm

h c :

Indenter contact depth, nm

h m :

Max indentation depth, nm

h r :

Reduced indentation depth, nm

n :

Strain Hardening Exponent

P :

Indentation load, mN

P max :

Maximum indentation load, mN

S :

Slope of the unloading curve

\( \nu_{s} \) :

Poisson ratio of the specimen

\( \nu_{i} \) :

Poisson ratio of the indenter

σ :

Flow stress in the presence of a strain gradient, MPa

σ o :

Flow stress in the absence of strain gradient, MPa

σ y :

Yield stress, MPa

ρ s :

Density of statistically stored dislocations,

μ :

Shear modulus, GPa

θ :

Angle between the surface of the indenter and the plane of the specimen surface

\( \chi \) :

Strain gradient

l ^ :

Intrinsic material length scale, µm

ε :

Strain

ε p :

Plastic strain

γ :

Indenter Geometry constant

References

  1. Liu Y, and Ngan A H W, Scripta Mat 44 (2001) 237.

    Article  Google Scholar 

  2. Tekaya A, Labdi S, Benameur T, and Jellad A, J Mater Sci 44 (2009) 4930.

    Article  Google Scholar 

  3. Lee D J, Alloy Compd 480 (2009) 347.

    Article  Google Scholar 

  4. Deng X, Chawla N, Chawla K K, and Koopman M, Acta Mater 52 (2004) 4291.

    Article  Google Scholar 

  5. Swain M V, Mater Sci Eng A 253 (1998) 166.

    Article  Google Scholar 

  6. Venkatesh T A, Van Vliet K J, Giannakopoulos A E, and Suresh S, Scripta Mater 42 (2000) 833

    Article  Google Scholar 

  7. Chollacoop N, Dao M, and Suresh S, Acta Mater 51 (2003) 3713.

    Article  Google Scholar 

  8. Field J S, and Swain M V, J Mater Res 8 (1993) 297.

    Article  Google Scholar 

  9. Field J S, and Swain M V, J Mater Res 10 (1995) 101.

    Article  Google Scholar 

  10. Mayo M J, and Nix W D, Acta Metall 36 (1988) 2183.

    Article  Google Scholar 

  11. Raman V, and Berriche R, J Mater Res 7 (1992) 627.

    Article  Google Scholar 

  12. Poisl W H, Oliver W C, and Fabes B D, J Mater Res 10 (1995) 2024.

    Article  Google Scholar 

  13. Pharr G M, Mater Sci Eng A 253 (1998) 151.

    Article  Google Scholar 

  14. Jang B K, J Alloy Comp 426 (2006) 312.

    Article  Google Scholar 

  15. Montanari B, Costanza G, Tata M E, and Testani C, Mater Charact 59 (2008) 334.

    Article  Google Scholar 

  16. Biswas A, and Majumdar D, J Mater Charact 60 (2009) 513.

    Article  Google Scholar 

  17. Vanderhasten M, Rabet L, and Verlinden B, Mater Des 29 (2008) 1090.

    Article  Google Scholar 

  18. Seshacharyulu T, Medeiros S C, Frazier W G, and Prasad Y V R K, Mater Sci and Engg A 284 (2000) 184.

    Article  Google Scholar 

  19. Kumaraswamy A, and Vekataraman B, Scripta Materialia 54 (2006) 493.

    Article  Google Scholar 

  20. Cai J, Li F, Liu T, and Bo C, Mater charact 62 (2011) 287.

    Article  Google Scholar 

  21. Mcekhaney K W, Vlasak J J, and Nix W D, J Mater Res 13 (1998) 1300.

    Article  Google Scholar 

  22. Shu J Y, and Fleck N A, Int J Solids Struct 161 (1998) 49.

    Google Scholar 

  23. Nix W D, and Gao H, J Mech Phys Solids 46 (1998) 411.

    Article  Google Scholar 

  24. Oliver W C, and Pharr G M, J Mater Res 7 (1992) 1564.

    Article  Google Scholar 

  25. Ma Q, and Clarke D R, J Mater Res 10 (1995) 853.

    Article  Google Scholar 

  26. Castany P, Pettinari-Sturmel F, Crestou J, Douin J, and Coujou A, Acta Mater 55 (2007) 6284.

    Article  Google Scholar 

  27. Guelorget B, and François M, J Mater Lett 61 (2007) 34.

    Article  Google Scholar 

  28. Dao M, Chollacoop N, Van Vliet K J, Venkatesh T A, and Suresh S, Acta Mat 49 (2001) 3899.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Vice chancellor, DIAT (DU), Pune for granting permission to publish this paper. The help provided by technical staff at Central Manufacturing Technology Institute (CMTI), Bangalore to use the facilities for conducting nanoindentation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumaraswamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SridharBabu, B., Kumaraswamy, A. & AnjaneyaPrasad, B. Effect of Indentation Size and Strain Rate on Nanomechanical Behavior of Ti-6Al-4VAlloy. Trans Indian Inst Met 68, 143–150 (2015). https://doi.org/10.1007/s12666-014-0438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0438-z

Keywords

Navigation