Skip to main content
Log in

Recent Development of Nanomaterial-Doped Conductive Polymers

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. F. Liu, Y. Yuan, L. Li, S. Shang, X. Yu, Q. Zhang, S. Jiang, and Y. Wu, Comp. Part B Eng. 69, 232 (2015).

    Article  Google Scholar 

  2. C. Acquah, C.K.S. Moy, M.K. Danquah, and C.M. Ongkudon, J. Chromatogr. B Biomed. Sci. Appl. 1015, 121 (2016).

    Google Scholar 

  3. S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Q.U. Wahab, M. Willander, S.M. Al-hilli, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel, W. van der Wijngaart, E.W.H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu, and K. Persson, Mater. Sci. Eng. R Rep. 56, 1 (2007).

    Article  Google Scholar 

  4. J. Ho, Y. Huang, M.K. Danquah, H. Wang, and G.M. Forde, Eur. J. Pharm. Sci. 39, 412 (2010).

    Article  Google Scholar 

  5. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).

    Article  Google Scholar 

  6. R. Balint, N.J. Cassidy, and S.H. Cartmell, Acta Biomater. 10, 2341 (2014).

    Article  Google Scholar 

  7. P. Zarras, N. Anderson, C. Webber, D.J. Irvin, J.A. Irvin, A. Guenthner, and J.D. Stenger-Smith, Radiat. Phys. Chem. 68, 387 (2003).

    Article  Google Scholar 

  8. D. Kumar and R.C. Sharma, Eur. Polym. J. 34, 1053 (1998).

    Article  Google Scholar 

  9. G. Wegner, Angew. Chem. Int. Ed. Engl. 20, 361 (1981).

    Article  Google Scholar 

  10. L.M. Wilson, Conducting Polymers and Applications, in Materials Science and Technology (New York: Wiley, 2006).

    Google Scholar 

  11. P. Kar, Doping in Conjugated Polymers (New York: Wiley, 2013), pp. 1–18.

    Book  Google Scholar 

  12. J.L. Brédas, R.L. Elsenbaumer, R.R. Chance, and R. Silbey, J. Chem. Phys. 78, 5656 (1983).

    Article  Google Scholar 

  13. W. Barford, Electronic and Optical Properties of Conjugated Polymers, 2nd ed. (New York: Oxford Science Publications, 2013).

    Book  Google Scholar 

  14. M.J. Tan, C. Owh, P.L. Chee, A.K.K. Kyaw, D. Kai, and X.J. Loh, J. Mater. Chem. C 4, 5531 (2016).

    Article  Google Scholar 

  15. S. Percec, L. Howe, J. Li, A. Bagshaw, S. Peacock, C. Bolas, and D. Brill, Polymer 54, 5754 (2013).

    Article  Google Scholar 

  16. L. Yuan, C. Wan, X. Ye, and F. Wu, Electrochim. Acta 213, 115 (2016).

    Article  Google Scholar 

  17. Z. Deljoo Kojabad and S.A. Shojaosadati, Mater. Des. 96, 378 (2016).

    Article  Google Scholar 

  18. B. Zong, P. Ho, and S.C. Wuang, Mater. Chem. Phys. 149, 156 (2015).

    Article  Google Scholar 

  19. S. Maiti, D. Das, and K. Sen, Mater. Sci. Eng. B 187, 96 (2014).

    Article  Google Scholar 

  20. P.P. Jeeju, S.J. Varma, P.A. Francis Xavier, A.M. Sajimol, and S. Jayalekshmi, Mater. Chem. Phys. 134, 803 (2012).

    Article  Google Scholar 

  21. G. Song, L. Liu, J. Han, C. Wang, and G. Wang, Synth. Met. 197, 126 (2014).

    Article  Google Scholar 

  22. Y. Qiao, L. Shen, and Y. Guo, Mater. Lett. 86, 38 (2012).

    Article  Google Scholar 

  23. M.B.G. Costa, J.M. Juárez, M.L. Martínez, A.R. Beltramone, J. Cussa, and O.A. Anunziata, Mater. Res. Bull. 48, 661 (2013).

    Article  Google Scholar 

  24. H.-Y. Woo, W.-G. Jung, D.-W. Ihm, and J.-Y. Kim, Synth. Met. 160, 588 (2010).

    Article  Google Scholar 

  25. M. Li, H. Zhu, X. Mao, W. Xiao, and D. Wang, Electrochim. Acta 92, 108 (2013).

    Article  Google Scholar 

  26. D.S. Pramila Devi, P.K. Bipinbal, T. Jabin, and S.K.N. Kutty, Mater. Des. 43, 337 (2013).

    Article  Google Scholar 

  27. R.K. Goyal, K.R. Kambale, S.S. Nene, B.S. Selukar, S. Arbuj, and U.P. Mulik, Mater. Chem. Phys. 128, 114 (2011).

    Article  Google Scholar 

  28. V. Saxena and B.D. Malhotra, Curr. Appl. Phys. 3, 293 (2003).

    Article  Google Scholar 

  29. P. Kar, Doping in Conjugated Polymer (New York: Wiley, 2013), pp. 63–79.

    Book  Google Scholar 

  30. C. Buzea, I.I. Pacheco, and K. Robbie, Biointerphases 2, MR17 (2007).

    Article  Google Scholar 

  31. Ş. Celasun, Secret of Nanomaterials. AIP Conference Proceedings 1479, 1811 (2012).

    Article  Google Scholar 

  32. B.L. Theraja, Modern Physics, vol. S (New Delhi, India: Chand Limited, 2008).

    Google Scholar 

  33. K. Ghanbari, Synth. Met. 195, 234 (2014).

    Article  Google Scholar 

  34. B. Zhao and Z. Nan, Mater. Sci. Eng. C 32, 804 (2012).

    Article  Google Scholar 

  35. N. Yamamoto, R. Guzman de Villoria, and B.L. Wardle, Compos. Sci. Technol. 72, 2009 (2012).

    Article  Google Scholar 

  36. E. Kim, Y. Lee, J. Bang, K. Kim, and S. Choe, Mater. Chem. Phys. 134, 814 (2012).

    Article  Google Scholar 

  37. A. Patole and L. Gilles, Carbon 81, 720 (2015).

    Article  Google Scholar 

  38. Y. Lee, E. Kim, K. Kim, B.H. Lee, and S. Choe, Colloids Surf. A 396, 195 (2012).

    Article  Google Scholar 

  39. S. Dhibar, P. Bhattacharya, G. Hatui, and C.K. Das, J. Alloys Compd. 625, 64 (2015).

    Article  Google Scholar 

  40. X. Zhang, Z. Lin, B. Chen, W. Zhang, S. Sharma, W. Gu, and Y. Deng, J. Power Sources 246, 283 (2014).

    Article  Google Scholar 

  41. J. Szeremeta, M. Nyk, and M. Samoc, Opt. Mater. 37, 688 (2014).

    Article  Google Scholar 

  42. J. Szeremeta, M. Nyk, A. Chyla, W. Strek, and M. Samoc, Opt. Mater. 33, 1372 (2011).

    Article  Google Scholar 

  43. Y. Yang, S. Qi, and J. Wang, J. Alloys Compd. 520, 114 (2012).

    Article  Google Scholar 

  44. D. Nandi, K. Gupta, A.K. Ghosh, A. De, N.R. Ray, and U.C. Ghosh, Chem. Eng. J. 220, 107 (2013).

    Article  Google Scholar 

  45. X. Wang, C. Yang, H. Li, and P. Liu, Electrochim. Acta 111, 729 (2013).

    Article  Google Scholar 

  46. Y. Song, J.-L. Xu, and X.-X. Liu, J. Power Sources 249, 48 (2014).

    Article  Google Scholar 

  47. H.-T. Lee and Y.-C. Liu, Polymer 46, 10727 (2005).

    Article  Google Scholar 

  48. A. Alqudami, S. Annapoorni, P. Sen, and R.S. Rawat, Synth. Met. 157, 53 (2007).

    Article  Google Scholar 

  49. Y. Ali, K. Sharma, V. Kumar, R.G. Sonkawade, and A.S. Dhaliwal, Appl. Surf. Sci. 280, 950 (2013).

    Article  Google Scholar 

  50. M. Omastová, K. Mosnáčková, P. Fedorko, M. Trchová, and J. Stejskal, Synth. Met. 166, 57 (2013).

    Article  Google Scholar 

  51. J. Upadhyay and A. Kumar, Compos. Sci. Technol. 97, 55 (2014).

    Article  Google Scholar 

  52. K.-S. Kim, I.-J. Kim, and S.-J. Park, Synth. Met. 160, 2355 (2010).

    Article  Google Scholar 

  53. H.-T. Lee, Y.-C. Liu, and L.-H. Lin, J. Polym. Sci. Part A Polym. Chem. 44, 2724 (2006).

    Article  Google Scholar 

  54. M. Ghadim, A. Imani, and G. Farzi, J. Nanostruct. Chem. 4, 1 (2014).

    Article  Google Scholar 

  55. T.L. Yang, C.T. Pan, Y.C. Chen, L.W. Lin, I.C. Wu, K.H. Hung, Y.R. Lin, H.L. Huang, C.F. Liu, S.W. Mao, and S.W. Kuo, Opt. Mater. 39, 118 (2015).

    Article  Google Scholar 

  56. B.L. Seal, T.C. Otero, and A. Panitch, Mater. Sci. Eng. R Rep. 34, 147 (2001).

    Article  Google Scholar 

  57. M.J. Richardson, J.H. Johnston, and T. Borrmann, Curr. Appl. Phys. 6, 462 (2006).

    Article  Google Scholar 

  58. R.E. Rivero, M.A. Molina, C.R. Rivarola, and C.A. Barbero, Sens. Actuators B 190, 270 (2014).

    Article  Google Scholar 

  59. X. Yin, Y. Li, Y. Feng, and W. Feng, Synth. Met. 220, 560 (2016).

    Article  Google Scholar 

  60. A.M. Díez-Pascual, M. Naffakh, C. Marco, and G. Ellis, Compos. A 43, 603 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks are due to the Mechanical Engineering Department of Curtin University, Sarawak Campus, for the funding and encouragement of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Anwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asyraf, M., Anwar, M., Sheng, L.M. et al. Recent Development of Nanomaterial-Doped Conductive Polymers. JOM 69, 2515–2523 (2017). https://doi.org/10.1007/s11837-017-2628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2628-8

Navigation