Skip to main content

Polymer Nanocomposites for Electronics, Dielectrics, and Microwave Applications

  • Chapter
  • First Online:
Properties and Applications of Polymer Nanocomposites

Abstract

This chapter provides an overview on the carbon nanofillers such as carbon nanotube (CNT) and graphene-based polymer nanocomposites for electronics, dielectrics, and microwave applications. The carbon-based nanofillers such as CNT and graphene are having sp2-hybridized C-atoms arranged in three-dimensional and two-dimensional lattice manner, respectively. These nanofillers exhibit exceptional thermal, mechanical, and dielectric properties. The carbon nanofillers create interconnected conductive networks in the insulating polymer matrix, and that enables the polymer nanocomposites a potential multifunctional material for various use in dielectric, electronic, and microwave fields. The applications of carbon nanofiller-based polymer nanocomposites in capacitor, super capacitor, sensor, and dielectric field have been described in this chapter briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hua, N., Karube, Y., Yan, C., Masuda, Z., Fukunaga, H.: Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56, 2929 (2008)

    Article  Google Scholar 

  2. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  3. Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forr’o, L., Benoit, W., Zuppiroli, L.: Mechanical properties of carbon nanotubes. App. Phy. A69, 255 (1999)

    Article  Google Scholar 

  4. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899 (2001)

    Article  CAS  Google Scholar 

  5. Coleman, N., Khan, U., Guko, Y.K.: Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Adv. Mater. 18, 689 (2006)

    Article  CAS  Google Scholar 

  6. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Simplified measurement method of electromagnetic wave shielding and absorbing characteristics in mm-wave. Nature 438, 197 (2005)

    Article  CAS  Google Scholar 

  7. Hatakeyama, K., Togawa, H.: Two-dimensional gas of massless Dirac fermions in graphene. IEICE Trans. B-II J81-B-II, 651 (1998)

    Google Scholar 

  8. Harada, Y.: Research and development of frequency resources in MPT. JIEICE 78, 741 (1995)

    Google Scholar 

  9. Das, N.C., Chaki, T.K., Khastgir, D., Chakraborty, A.: Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers. J. Appl. Polym. Sci. 80, 1601 (2001)

    Article  CAS  Google Scholar 

  10. Bryning, M.B., Islam, M.F., Kikkawa, J.M., Yodh, A.G.: Very Low Conductivity Threshold in Bulk Isotropic Single-Walled Carbon Nanotube–Epoxy Composites. Adv. Mater. 17, 1186 (2005)

    Article  CAS  Google Scholar 

  11. Fletcher, A., Gupta, M.C., Dudley, K.L., Vedeler, E.: Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications. Compos. Sci. Technol. 70, 953 (2010)

    Article  CAS  Google Scholar 

  12. Chung, D.D.L.: Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 39, 279 (2001)

    Article  CAS  Google Scholar 

  13. Mahmoodi, M., Arjmand, M., Sundararaj, U., Park, S.: The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon 50, 1455 (2012)

    Article  CAS  Google Scholar 

  14. Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H., Chen, Y.: Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922 (2009)

    Article  CAS  Google Scholar 

  15. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  CAS  Google Scholar 

  16. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007)

    Article  CAS  Google Scholar 

  17. Sadek, A.Z., Wlodarski, W., Kalantar-zadeh, K., Baker, C., Kaner, R.B.: Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sens. Actuators. A 139, 53 (2007)

    Article  CAS  Google Scholar 

  18. Al-Mashat, L., Shin, K., Kalantar-zadeh, K., Plessis, J.D., Han, S.H., Kojima, R.W., Kaner, R.B., Dan, L., Gou, X., Ippolito, S.J., Wlodarski, W.: Graphene/Polyaniline Nanocomposite for Hydrogen Sensing. J. Phys. Chem. C 114, 16168 (2010)

    Article  CAS  Google Scholar 

  19. Rajesh, Ahuja, T., Kumar, D.: Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators B 136, 275 (2009)

    Article  CAS  Google Scholar 

  20. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)

    Article  CAS  Google Scholar 

  21. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 448, 457 (2007)

    Article  CAS  Google Scholar 

  22. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282 (2006)

    Article  CAS  Google Scholar 

  23. Frackowiak, E., Be’guin, F.: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 39, 950 (2001)

    Article  Google Scholar 

  24. Zhou, H.H., Chen, H., Luo, S.L., Lu, G.W., Wei, W.Z., Kuang, Y.F.: The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J. Solid State Electrochem. 9, 574 (2005)

    Article  CAS  Google Scholar 

  25. Peng, C., Zhang, S.W., Jewell, D., Chen, G.Z.: Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Prog. Nat. Sci. 18, 777 (2008)

    Article  CAS  Google Scholar 

  26. Wu, Q., Xu, Y., Yao, Z., Liu, A., Shi, G.: Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 4, 1963 (2010)

    Article  CAS  Google Scholar 

  27. Cuentas-Gallegos, A.K., Lira-Cantu, M., Casañ-Pastor, N., Go’mez- Romero, P.: Nanocomposite Hybrid Molecular Materials for Application in Solid-State Electrochemical Supercapacitors. Adv. Funct. Mater. 15, 1125 (2005)

    Article  CAS  Google Scholar 

  28. Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., Beguin, F.: Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153, 413 (2006)

    Article  CAS  Google Scholar 

  29. Park, H.K.: Exfoliation of Non-Oxidized Graphene Flakes for Scalable Conductive Film. Exfoliation. Nano Lett. 12, 2871 (2012)

    Article  CAS  Google Scholar 

  30. Pötschke, P., Fornes, T.D., Paul, D.R.: Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43, 3247 (2007)

    Article  Google Scholar 

  31. Koerner, H., Liu, W., Alexander, M., Mirau, P., Dowty, H., Vaia, R.A.: Deformation–morphology correlations in electrically conductive carbon nanotube—thermoplastic polyurethane nanocomposites. Macromol. Rapid Commun. 26, 4405 (2005)

    Google Scholar 

  32. Noll, A., Burkhart, T.: Morphological characterization and modelling of electrical conductivity of multi-walled carbon nanotube/poly(p-phenylene sulfide) nanocomposites obtained by twin screw extrusion. Compos. Sci. Technol. 71, 499 (2011)

    Article  CAS  Google Scholar 

  33. Zhu, B.K., Xie, S.H., Xu, Z.K., Xu, Y.Y.: Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos. Sci. Technol. 66, 4548 (2006)

    Article  Google Scholar 

  34. Song, Y.S., Youn, J.R.: Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43, 1378 (2005)

    Article  CAS  Google Scholar 

  35. Yan, K.Y., Xue, Q.Z., Zheng, Q.B., Hao, L.Z.: The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology 18, 255705 (2007)

    Article  Google Scholar 

  36. Nanda, M., Chaudhary, R.N.P., Tripathy, D.K.: Dielectric relaxation of conductive carbon black reinforced chlorosulfonated polyethylene vulcanizates. Polym. Compos. 31, 152 (2010)

    Article  CAS  Google Scholar 

  37. Li, X.L., Liu, Y.Q., Fu, L., Cao, L.C., Wei, D.C., Wang, Y.: Efficient Synthesis of Carbon Nanotube–Nanoparticle Hybrids. Adv. Funct. Mater. 16, 2431 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhu Prasad Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Sahoo, B.P., Tripathy, D.K. (2017). Polymer Nanocomposites for Electronics, Dielectrics, and Microwave Applications. In: Tripathy, D., Sahoo, B. (eds) Properties and Applications of Polymer Nanocomposites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53517-2_2

Download citation

Publish with us

Policies and ethics