Skip to main content
Log in

Hot Workability and Superplasticity of Low-Al and High-Nb Containing TiAl Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The superplastic deformation mechanism of low-Al and high-Nb containing TiAl alloy was investigated in compression mode. The experimental results showed that intense dynamic recrystallization (DRX) breaks the balance and leads to a significant drop in flow stress after the peak when deforming below 950°C. Arrhenius kinetic analysis revealed that the activation energy for superplastic compression first increased then decreased with temperature, suggesting a change in the deformation mechanism. Microstructure observations showed that, when deformed at 850°C, the deformation mechanism was grain-boundary sliding accommodated by γ-DRX, γ-intragranular deformation, and β/B2-phase decomposition, while the mechanism was grain-boundary sliding accommodated by γ-DRX, β/B2-DRX, and γ → β/B2 + α 2 phase transformation when deformed at 1000°C. After compression, the microstructure tended to be uniform, which may yield important information for the development of new deformation techniques for TiAl alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.M. Dimiduk, Mater. Sci. Eng. A 263, 281 (1999).

    Article  Google Scholar 

  2. P. Janschek, Mater. Today 2S, S92 (2015).

    Article  Google Scholar 

  3. D.S. Shih and Y.W. Kim, Ti-2007 Science and Technology, ed. M. Ninomi (Sendai: The Japan Institute of Metals, 2007), pp. 1021–1024.

    Google Scholar 

  4. J.S. Kim, Y.H. Lee, Y.W. Kim, and C.S. Lee, Mater. Sci. Forum 539–543, 1531 (2007).

    Article  Google Scholar 

  5. T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi, and M. Takeyama, Intermetallics 13, 971 (2005).

    Article  Google Scholar 

  6. T. Tetsui, K. Shindo, S. Kobayashi, and M. Takeyama, Intermetallics 11, 299 (2003).

    Article  Google Scholar 

  7. B. Tang, L. Cheng, H.C. Kou, and J.S. Li, Intermetallics 58, 7 (2015).

    Article  Google Scholar 

  8. B. Tang, W.C. Ou, H.C. Kou, and J.S. Li, Mater. Charact. 109, 122 (2015).

    Article  Google Scholar 

  9. L. Cheng, Y. Chen, J.S. Li, and E. Bouzy, Mater. Lett. 194, 58 (2017).

    Article  Google Scholar 

  10. L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, O. Perroud, and E. Bouzy, J. Alloys Compd. 693, 749 (2017).

    Article  Google Scholar 

  11. D. Zhang, G. Dehm, and H. Clemens, Scr. Mater. 42, 1065 (2000).

    Article  Google Scholar 

  12. P.F. Gao, M. Zhan, X.G. Fan, Z.N. Lei, and Y. Cai, Mater. Sci. Eng. A 689, 243 (2017).

    Article  Google Scholar 

  13. X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, and Y.F. Han, Intermetallics 20, 1 (2012).

    Article  Google Scholar 

  14. Y.V.R.K. Prasad and T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1998).

    Article  Google Scholar 

  15. M.E. Kassner and M.T. Perez-Prado, Prog. Mater. Sci. 45, 1 (2000).

    Article  Google Scholar 

  16. Y. Mishin and C. Herzig, Acta Mater. 48, 589 (2000).

    Article  Google Scholar 

  17. P.M. Sargent and M.F. Ashby, Scr. Metall. Mater. 16, 1415 (1982).

    Article  Google Scholar 

  18. L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, and E. Bouzy, Intermetallics 75, 62 (2016).

    Article  Google Scholar 

  19. Z.X. Du, J.S. Liu, G.W. Li, K. Lv, G.L. Liu, L.M. Yan, and Y.Y. Chen, Mater. Sci. Eng. A 650, 414 (2016).

    Article  Google Scholar 

  20. F. Appel, H. Clemens, and F.D. Fischer, Prog. Mater. Sci. 81, 55 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51771150), the National Key Research and Development Program of China (No. 2016YFB0701303), the Aeronautical Science Foundation of China (No. 2015ZE53057), and the “111” Project (No. B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Zhao, F., Chu, Y. et al. Hot Workability and Superplasticity of Low-Al and High-Nb Containing TiAl Alloys. JOM 69, 2610–2614 (2017). https://doi.org/10.1007/s11837-017-2576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2576-3

Navigation