Skip to main content
Log in

Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I.A. Crawford, Prog. Phys. Geog. 39, 137 (2015).

    Article  Google Scholar 

  2. G.J. Taylor and L.M.V. Marte, Adv. Space Res. 31, 2403 (2003).

    Article  Google Scholar 

  3. W.H. Siegfried, Acta Astronaut. 44, 755 (1999).

    Article  Google Scholar 

  4. M.B. Duke, B.R. Blair, and J. Diaz, Adv. Space Res. 31, 2413 (2003).

    Article  Google Scholar 

  5. G.B. Sanders and W.E. Larson, J. Aerosp. Eng. 26, 5 (2013).

    Article  Google Scholar 

  6. W.D. Carrier, J. Geotech. Geoenviron. Eng. 129, 956 (2003).

    Article  Google Scholar 

  7. Y. Zhao and F. Shadman, AIChE J. 36, 1433 (1990).

    Article  Google Scholar 

  8. Y. Kobayashi, H. Sonezaki, R. Endo, and M. Susa, ISIJ Int. 50, 35 (2010).

    Article  Google Scholar 

  9. C.C. Allen, R.V. Morris, and D.S. McKay, J. Geophys. Res.: Planets 101, 26085 (1996).

    Article  Google Scholar 

  10. A.H.C. Sirk, D.R. Sadoway, and L. Sibille, ECS Trans. 28, 367 (2010).

    Article  Google Scholar 

  11. A.M. Liu, Z.N. Shi, J.L. Xu, X.W. Hu, B.L. Gao, and Z.W. Wang, JOM 68, 1518 (2016).

    Article  Google Scholar 

  12. A.M. Liu, J.Z. Guan, K.Y. Xie, and Z.N. Shi, J. Northeast. Univ. Nat. Sci. 37, 522 (2016).

    Google Scholar 

  13. W. Steurer, Space Resources: Materials, ed. M.F. Mckay, D.S. Mckay, and M.B. Duke (Houston: Johnson Space Center, 1992), pp. 210–213.

    Google Scholar 

  14. M.J. Eick, P.R. Grossl, D.C. Golden, D.L. Sparks, and D.W. Ming, Geoderma 74, 139 (1996).

    Article  Google Scholar 

  15. G.A. Landis, Acta Astronaut. 60, 906 (2007).

    Article  Google Scholar 

  16. G. Corrias, R. Licheri, R. Orrù, and G. Cao, Acta Astronaut. 70, 69 (2012).

    Article  Google Scholar 

  17. C. Schwandt, J.A. Hamilton, D.J. Fray, and I.A. Crawford, Planet. Space Sci. 74, 49 (2012).

    Article  Google Scholar 

  18. L.A. Taylor and W.D. Carrier III, AIAA J. 30, 2858 (1992).

    Article  Google Scholar 

  19. H. Xiao, R. Hovland, S. Rolseth, and J. Thonstad, Metall. Mater. Trans. B 27, 185 (1996).

    Article  Google Scholar 

  20. D.R. Sadoway, JOM 53 (5), 34 (2001).

    Article  Google Scholar 

  21. Z.N. Shi, J.L. Xu, Z.X. Qiu, B.L. Gao, and Z.W. Wang, JOM 55 (11), 63 (2003).

    Article  Google Scholar 

  22. P.W. Weiblen, M.J. Murawa, and K.J. Reid, Engineering, Construction, and Operations in Space II, ed. S.W. Johnson and J. Wetzel (New York: American Society of Civil Engineers, 1990), pp. 428–435.

    Google Scholar 

  23. E. Hill, M.J. Mellin, B. Deane, Y. Liu, and L.A. Taylor, J. Geophys. Res. 112, E02006 (2007).

    Google Scholar 

  24. J.S. Zhang and Z.X. Qiu, Light Met. 6, 10 (1988).

    Google Scholar 

  25. K. Grjotheim, C. Krohn, M. Malinovský, K. Matiašovský, and J. Thonstad, Aluminium Electrolysis: Fundamentals and the Hall-Héroult Process, 2nd ed. (Düsseldorf: Aluminium-Verlag, 1982), pp. 364–365.

    Google Scholar 

  26. E. Skybakmoen, A. Solheim, and A. Sterten, Metall. Mater. Trans. B 28, 81 (1997).

    Article  Google Scholar 

  27. W.E. Haupin and W.C. McGrew, Aluminum 51, 273 (1975).

    Google Scholar 

  28. Z.X. Qiu, L.M. Fan, K. Grjotheim, and H. Kvande, J. Appl. Electrochem. 17, 707 (1987).

    Article  Google Scholar 

  29. V. Chapman, B.J. Welch, and M. Skyllas-Kazacos, Electrochim. Acta 56, 1227 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Key Research and Development Program of China (No. 2017YFC0805101) and the National Natural Science Foundation of China (No. 51574071). Acknowledgment is also made to Dr. Rudolf Keller for enthusiastically providing the lunar soil simulant MLS-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongning Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Shi, Z., Xu, J. et al. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant. JOM 69, 1963–1969 (2017). https://doi.org/10.1007/s11837-017-2478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2478-4

Navigation