Skip to main content
Log in

Effects of Different Forging Processes on Microstructure Evolution for 316LN Austenitic Stainless Steel

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Forging experiments were designed and carried out on a 3150 kN hydraulic press to investigate the effects of different processes on the microstructure evolution for 316LN steel. The forging processes included single-pass (upsetting) and multipass (stretching) deformations, and the experimental results indicated that the average grain size varied with forging processes. Moreover, the size had distinct differences at different positions in the workpiece. Meanwhile, numerical simulations were implemented to study the influence of temperature, strain, and strain rate on microstructure evolution. The results of experiments and simulations comprehensively demonstrated that dynamic, static, and meta-dynamic recrystallization could coexist in the hot forging process and that the recrystallization process could easily occur under the conditions of higher temperature, larger strain, and higher strain rate. Moreover, the temperature had more significant influence on both recrystallization and grain growth. A higher temperature could not only promote the recrystallization but also speed up the grain growth. Therefore, a lower temperature is beneficial to obtain refinement grains on the premise that the recrystallization can occur completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Downey II, P.N. Kalu, and K. Han, Mater. Sci. Eng. A 480, 96 (2008).

    Article  Google Scholar 

  2. Y. Guo, E. Han, and J. Wang, J. Mater. Sci. Technol. 31, 403 (2015).

    Article  Google Scholar 

  3. S. Kumar, D. Samantaray, U. Borah, and A. Bhaduri, Trans. Indian Inst. Met. (2016). doi:10.1007/s12666-016-0990-9.

    Google Scholar 

  4. X. Zhang, Y. Zhang, Y. Li, and J. Liu, Mater. Sci. Eng. A 559, 301 (2013).

    Article  Google Scholar 

  5. J. He, J. Liu, Z. Cui, C. Yang, and F. Chen, J. Iron. Steel Res. Int. 21, 923 (2014).

    Article  Google Scholar 

  6. P.M. Rao and S.S. Bhattacharya, Trans. Indian Inst. Met. 62, 41 (2009).

    Article  Google Scholar 

  7. M. Wang, L. Chen, X. Liu, and X. Ma, Corros. Sci. 81, 117 (2014).

    Article  Google Scholar 

  8. V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan, and M.D. Mathew, Mater. Sci. Eng. A 607, 138 (2014).

    Article  Google Scholar 

  9. T.S. Byun, E.H. Lee, and J.D. Hunn, J. Nucl. Mater. 321, 29 (2003).

    Article  Google Scholar 

  10. B. Guo, H. Ji, X. Liu, L. Gao, R. Dong, M. Jin, and Q. Zhang, J. Mater. Eng. Perform. 21, 1455 (2012).

    Article  Google Scholar 

  11. D. Samantaray, S. Mandal, A. Bhaduri, S. Venugopal, and P. Sivaprasad, Mater. Sci. Eng. A 528, 1937 (2011).

    Article  Google Scholar 

  12. D. Samantaray, S. Mandal, C. Phaniraj, and A. Bhaduri, Mater. Sci. Eng. A 528, 8565 (2011).

    Article  Google Scholar 

  13. D. Samantaray, S. Mandal, V. Kumar, S. Albert, A. Bhaduri, and T. Jayakumar, Mater. Sci. Eng. A 552, 236 (2012).

    Article  Google Scholar 

  14. W. Zhang, S. Sun, D. Zhao, B. Wang, Z. Wang, and W. Fu, Mater. Des. 32, 4173 (2011).

    Article  Google Scholar 

  15. M. Jin, B. Lu, X. Liu, H. Guo, H. Ji, and B. Guo, J. Iron Steel Res. Int. 20, 67 (2013).

    Article  Google Scholar 

  16. X. Duan and J. Liu, Mater. Sci. Eng. A 588, 265 (2013).

    Article  Google Scholar 

  17. R. Zhang, Z. Wang, Z. Shi, B. Wang, and W. Fu, Strength Mater. 47, 94 (2015).

    Article  Google Scholar 

  18. A. He, X. Wang, G. Xie, X. Yang, and H. Zhang, J. Iron Steel Res. Int. 22, 721 (2015).

    Article  Google Scholar 

  19. X. Liu, L. Zhang, R. Qi, L. Chen, M. Jin, and B. Guo, J. Iron Steel Res. Int. 23, 238 (2016).

    Article  Google Scholar 

  20. S. Wang, B. Yang, M. Zhang, H. Wu, J. Peng, and Y. Gao, Ann. Nucl. Energy 87, 176 (2016).

    Article  Google Scholar 

  21. S. Wang, M. Zhang, H. Wu, and B. Yang, Mater. Charact. 118, 92 (2016).

    Article  Google Scholar 

  22. P. Zhang, D. Sui, K. Qi, and Z. Cui, J. Plast. Eng. 21, 44 (2014).

    Google Scholar 

  23. K. Qi, D. Sui, F. Chen, and Z. Cui, J. Plast. Eng. 21, 98 (2014).

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Grant No.: 51675335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dashan Sui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, D., Zhu, L., Wang, T. et al. Effects of Different Forging Processes on Microstructure Evolution for 316LN Austenitic Stainless Steel. JOM 69, 1773–1778 (2017). https://doi.org/10.1007/s11837-017-2472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2472-x

Navigation