Skip to main content
Log in

Cleaner Production of Ti Powder by a Two-Stage Aluminothermic Reduction Process

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A two-stage aluminothermic reduction process for preparing Ti powder under vacuum conditions using Na2TiF6 was investigated. An Al-Ti master alloy and a clean cryolite were simultaneously obtained as co-products. The first-stage reduction was an exothermic process that occurred at approximately 660°C. The Al and O contents of the Ti powder product were 0.18 wt.% and 0.35 wt.%, respectively, with an average particle size <74 μm. Ti(IV), Ti(III), and metallic Ti were present in the Ti-containing cryolite produced by the first-stage reduction, at a total content of approximately 3.13 wt.%. After second-stage reduction, the Ti elemental contents of the clean cryolite were reduced to 0.002 wt.%. The Al-Ti master alloy obtained by second-stage reduction was composed of Al and TiAl3. The mechanisms involved in these reduction processes were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Zhang, Can. Metall. Q. 53, 440 (2014).

    Article  Google Scholar 

  2. H.H. Nersisyan, H.I. Won, C.W. Won, A. Jo, and J.H. Kim, Chem. Eng. J. 235, 67 (2014).

    Article  Google Scholar 

  3. M. Khodaei, M. Meratian, O. Savabi, and M. Razavi, Mater. Lett. 171, 308 (2016).

    Article  Google Scholar 

  4. L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo, Mater. Sci. Eng. A 687, 47 (2017).

    Article  Google Scholar 

  5. P. Sun, Z.Z. Fang, Y. Xia, Y. Zhang, and C.S. Zhou, Powder Technol. 301, 331 (2016).

    Article  Google Scholar 

  6. Y. Zheng, X. Yao, J. Liang, and D. Zhang, Metall. Mater. Trans. A 47, 1842 (2016).

    Article  Google Scholar 

  7. W.J. Kroll, Trans. Am. Electrochem. Soc. 78, 35 (1940).

    Article  Google Scholar 

  8. G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature 407, 361 (2000).

    Article  Google Scholar 

  9. D.J. Fray and G.Z. Chen, Mater. Sci. Technol. 20, 295 (2004).

    Article  Google Scholar 

  10. K. Ono and R.O. Suzuki, JOM 54, 59 (2002).

    Article  Google Scholar 

  11. T. Uda, T.H. Okabe, Y. Waseda, and K.T. Jacob, Metall. Mater. Trans. B 31, 713 (2000).

    Article  Google Scholar 

  12. S.Q. Jiao and H.M. Zhu, J. Alloys Compd. 438, 243 (2007).

    Article  Google Scholar 

  13. K. Zhao, Y.W. Wang, J.P. Peng, Y.Z. Di, K.J. Liu, and N.X. Feng, RSC Adv. 6, 8644 (2016).

    Article  Google Scholar 

  14. D.J. Fray, Int. Mater. Rev. 53, 317 (2008).

    Article  Google Scholar 

  15. A.D. Hartman, S.J. Gerdemann, and J.S. Hansen, JOM 50, 16 (1998).

    Article  Google Scholar 

  16. P. Ehrlich, Handbook of Preparative Inorganic Chemistry, 2nd ed. (Waltham: Academic Press, 1965).

    Google Scholar 

  17. M. Maeda, T. Yahata, K. Mitugi, and T. Ikeda, Mater. Trans. JIM 34, 599 (1993).

    Article  Google Scholar 

  18. T. Yahata, T. Ikeda, and M. Maeda, Metall. Trans. B 24, 599 (1993).

    Article  Google Scholar 

  19. N. El-Mahallawy, M.A. Taha, A.E.W. Jarfors, and H. Fredriksson, J. Alloys Compd. 292, 221 (1999).

    Article  Google Scholar 

  20. J. Fjellstedt and A.E.W. Jarfors, Mater. Sci. Eng. A 413, 527 (2005).

    Article  Google Scholar 

  21. J.D. Donaldson, C.P. Squire, and F.E. Stokes, J. Mater. Sci. 13, 421 (1978).

    Article  Google Scholar 

  22. M.S. Lee, B.S. Terry, and P. Grieveson, Trans. Inst. Min. Metall. Sect. C 103, 26 (1994).

    Google Scholar 

  23. K. Adamkovičová, L. Kosa, I. Nerád, I. Proks, and J. Strečko, Thermochim. Acta 258, 15 (1995).

    Article  Google Scholar 

  24. K.V.S. Prasad, B.S. Murty, P. Pramanik, P.G. Mukunda, and M. Chakraborty, Mater. Sci. Technol. 12, 766 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 51674076) and the State Key Development Program for Basic Research of China (973 Program, Grant No. 2013CB632606-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naixiang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Wang, Y. & Feng, N. Cleaner Production of Ti Powder by a Two-Stage Aluminothermic Reduction Process. JOM 69, 1795–1800 (2017). https://doi.org/10.1007/s11837-017-2337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2337-3

Keywords

Navigation