Skip to main content
Log in

Contactless electrochemical reduction of titanium (II) chloride by aluminum

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Because of the strong affinity between aluminum and titanium, it has not been possible to produce pure titanium by direct aluminothermic reduction of titanium chlorides. Described in this article is a new process for contactless reduction of titanium dichloride by aluminum in which titanium dichloride and the reductant (aluminum or aluminum alloy) were physically separated, but electrochemically connected through molten NaCl and an external circuit. Titanium dichloride was spontaneously reduced to metal by a cathodic reaction with the simultaneous discharge of chlorine ions into the melt. At the anode, metal aluminum was oxidized to form aluminum chloride dissolved in the molten salt. The electrons were transferred between the electrodes through the external circuit. The concentration of aluminum in titanium produced at 1223 and 1273 K varied from values below the detection limit of the X-ray fluorescence analysis (0.01 mass pct) to 4.5 mass pct. The average contamination was 0.76 mass pct Al. When an aluminum-nickel alloy was used as the reductant, nickel was not detected in the titanium obtained by reduction. This observation suggests that aluminum scrap may be used as a cheap reductant in this contactless electrochemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kroll: Tr. Electrochem. Soc., 1940, vol. 78, pp. 35–47.

    Google Scholar 

  2. D.R. Sadoway and T.H. Okabe: Massachusetts Institute of Technology, Technology Disclosure, O.S.P. Project No.61243, MIT, Cambridge, MA, 1994.

    Google Scholar 

  3. T.H. Okabe and D.R. Sadoway: J. Mater. Res., 1998, vol. 13, pp. 3372–77.

    CAS  Google Scholar 

  4. T. Uda, T.H. Okabe, E. Kasai, and Y. Waseda: J. Jpn. Inst. Met., 1997, vol. 61, pp. 602–09.

    CAS  Google Scholar 

  5. T.H. Okabe, T. Uda, E. Kasai, and Y. Waseda: J. Jpn. Inst. Met., 1997, vol. 61, pp. 610–18.

    CAS  Google Scholar 

  6. t.H. Okabe and Y. Waseda: J. Met., 1997, vol. 49(6), pp. 28–32.

    CAS  Google Scholar 

  7. T. Uda, T.H. Okabe, and Y. Waseda: J. Jpn. Inst. Met., 1998, vol. 62, pp. 76–84.

    CAS  Google Scholar 

  8. T. Uda, T.H. Okabe, and Y. Waseda: J. Jpn. Inst. Met., 1998, vol. 62, pp. 796–802.

    CAS  Google Scholar 

  9. T. Uda, T.H. Okabe, Y. Waseda, and K.T. Jacob: J. Alloys Compounds, 1999, vol. 284, pp. 282–288.

    Article  CAS  Google Scholar 

  10. T.H. Okabe, T. Uda, and Y. Waseda: J. Min. Mater. Processing Inst. Jpn., 1998, vol. 114, pp. 573–79.

    Article  CAS  Google Scholar 

  11. F. Zhang, S.L. Chen, Y.A. Chang, and U.R. Kattner: Intermetallics, 1997, vol. 5, pp. 471–82.

    Article  CAS  Google Scholar 

  12. T. Yahata, T. Mitsugi, and M. Maeda: CAMP-ISIJ (Proc. Iron Steel Inst. Jpn.), 1990, vol. 3, p. 1646.

    Google Scholar 

  13. G.W. Fletcher: U.S. Patent No. 4,169,722, 1979.

  14. J. Kamlet: U.S. Patent No. 2837426, 1958.

  15. T. Kumagai, S. Konda, T. Sasaki, and T. Ishikawa: Denki Kagaku, 1996, vol. 64, pp. 296–300.

    CAS  Google Scholar 

  16. Q. Zhuxian, Z. Minglie, Y. Xaxin, C. Zhenghan, K. Grjothim, and H. Kvande: Aluminium, 1988, vol. 64, pp. 606–09.

    Google Scholar 

  17. M. Maeda, T. Kiwake, K. Shibuya, and T. Ikeda: Mater. Sci. Eng. A, 1997, vols. 239–240, pp. 276–80.

    Google Scholar 

  18. Thermochemical Properties of Inorganic Substances, O. Knacke, O. Kubaschewski, and K. Hesselmann, eds., Springer-Verlag, Berlin, 1991.

    Google Scholar 

  19. O. Kubaschewski and W.A. Dench: J. Inst. Met., 1953–54, vol. 82, pp. 87–91.

    CAS  Google Scholar 

  20. K.L. Komarek and M. Silver: Proc. IAEA Symp., Thermodynamics of Nuclear Materials, IAEA, Vienna, 1962, pp. 749–74.

    Google Scholar 

  21. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Mater. Trans. JIM, 1991, vol. 32, pp. 485–88.

    CAS  Google Scholar 

  22. G.J. Janz: Molten Salts Handbook, Academic Press, New York, NY, 1967.

    Google Scholar 

  23. Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASM, Materials Park, OH, 1990.

    Google Scholar 

  24. R. Sailer and G. McCathy: Joint Committee on Powder Diffraction Standards (JCPDS) Card No. 44-1294, International Centre for Diffraction Data, Newtown Square, PA, 1993.

    Google Scholar 

  25. H. Linga, K. Motzfeldt, and H.A. Øye: Ber. Bunsenges. Phys. Chem., 1978, vol. 82, pp. 568–76.

    CAS  Google Scholar 

  26. S.N. Flengas: Ann. N.Y. Acad. Sci., 1960, vol. 79, pp. 853–72.

    Article  CAS  Google Scholar 

  27. V.S. Maksimov and M.V. Smirnov: Electrochem. Mol. Sol. Electrolytes, 1968, vol. 6, pp. 30–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uda, T., Okabe, T.H., Waseda, Y. et al. Contactless electrochemical reduction of titanium (II) chloride by aluminum. Metall Mater Trans B 31, 713–721 (2000). https://doi.org/10.1007/s11663-000-0110-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0110-3

Keywords

Navigation