Skip to main content
Log in

Microstructural Characterization of Red Mud as Affected by Inorganic and Organic Chemicals Permeation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructural characteristics of red mud (RM), especially specific surface area (SSA) and mesoporosity, and the effects of various representative fluids, namely methanol (80% v/v), trichloroethylene (TCE) (1100 mg/L), acetic acid (pH 2), and CaCl2 (5% w/v) aqueous solutions, were studied using N2-gas adsorption. The effect of compaction was also assessed. RM powder exhibited a moderate Brunauer–Emmet–Teller (BET)-SSA and is mostly a mesoporous (large mesopores, 200–500 Å) and a macroporous material. Compaction affected the macro and large, but not the fine, mesopores. Among the fluids, CaCl2 and acetic acid induced notable and opposing changes in RM microstructural characteristics. CaCl2 decreased SSA and suppressed fine mesoporosity, whereas acetic acid greatly enhanced them. Fractal analysis further indicated increasing surface roughness and heterogeneity of pore structure during acid exposure, altogether envisaging an improvement of adsorption capacity and a decrease of permeability of the RM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. K. Hammond, B. Mishra, D. Apelian, and B. Blanpain, JOM 65, 340 (2013).

    Article  Google Scholar 

  2. K. Evans, in Bauxite Residue Valorisation and Best Practices Conferences, ed. Y. Pontikes (Leuven, Belgium, 2015), pp. 113–128.

  3. S. Xue, F. Zhu, X. Kong, C. Wu, L. Huang, N. Huang, and W. Hartley, Environ. Sci. Pollut. Res. 23, 1120 (2016).

    Article  Google Scholar 

  4. W.M. Mayes, I.T. Burke, H.I. Gomes, A.D. Anton, M. Molnár, V. Feigl, and E. Ujaczki, J. Sustain. Metall. 2, 332 (2016).

    Article  Google Scholar 

  5. C. Klauber, M. Gräfe, and G. Power, Hydrometallurgy 108, 11 (2011).

    Article  Google Scholar 

  6. S. Wang, H.M. Ang, and M.O. Tadé, Chemosphere 72, 1621 (2008).

    Article  Google Scholar 

  7. U. Kuila and M. Prasad, Lead. Edge 32, 1478 (2013).

    Article  Google Scholar 

  8. B. Jha and D.N. Singh, Acta Geotech. Slov. 1, 63 (2014).

    Google Scholar 

  9. D.A. Rubinos, G. Spagnoli, and M.T. Barral, Int. J. Min. Reclamat. Environ. 29, 433 (2015).

    Article  Google Scholar 

  10. G.P. Broderick and D.E. Daniel, J. Geotech. Eng. 116, 1549 (1990).

    Article  Google Scholar 

  11. S. Oztoprak and B. Pisirici, Eng. Geol. 121, 110 (2011).

    Article  Google Scholar 

  12. M. Hohmann-Porebska, Appl. Clay Sci. 21, 77 (2002).

    Article  Google Scholar 

  13. R. Haus and K.A. Czurda, Contaminated Soil’95, ed. W.J. van den Brik, R. Bosman, and F. Arendt (Dordrecht: Kluwer Academic, 1995), p. 293.

    Google Scholar 

  14. D.A. Rubinos, G. Spagnoli, and M.T. Barral, Int. J. Environ. Sci. Technol. 13, 773 (2016).

    Article  Google Scholar 

  15. S. Brunauer, P.H. Hemmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    Article  Google Scholar 

  16. E.P. Barrett, L.G. Joyner, and P.P. Halenda, J. Am. Chem. Soc. 61, 373 (1951).

    Article  Google Scholar 

  17. M. Gräfe, G. Power, and C. Klauber, Hydrometallurgy 108, 60 (2011).

    Article  Google Scholar 

  18. P. Castaldi, M. Silvetti, L. Santona, S. Enzo, and P. Melis, Clays Clay Miner. 56, 461 (2008).

    Article  Google Scholar 

  19. M.L. Pereira, S.J. Couperthwaite, F. Tomazini, C. Petrisin, P. Kunihiko, A.C. Vieira, and R.L. Frost, Ind. Eng. Chem. Res. 51, 775 (2012).

    Article  Google Scholar 

  20. J. He, Y. Jie, J. Zhang, Y. Yu, and G. Zhang, Cem. Concr. Compos. 37, 108 (2013).

    Article  Google Scholar 

  21. S. Samal, A.K. Ray, and A. Bandopadhyay, J. Clean. Prod. 101, 368 (2015).

    Article  Google Scholar 

  22. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015).

    Article  Google Scholar 

  23. L.M. Anowitz and D.R. Cole, Rev. Mineral. Geochem. 80, 61 (2015).

    Article  Google Scholar 

  24. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pieroti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).

    Article  Google Scholar 

  25. S. Storck, H. Bretinger, and W.F. Maier, Appl. Catal. A 174, 137 (1998).

    Article  Google Scholar 

  26. S.J. Park and B.R. Jun, J. Colloid Interface Sci. 284, 204 (2005).

    Article  Google Scholar 

  27. S.I. Pyun and C.K. Rhee, Electrochim. Acta 49, 4171 (2004).

    Article  Google Scholar 

  28. M. Thommes, Chem. Ing. Tech. 82, 1059 (2010).

    Article  Google Scholar 

  29. K.W. Goyne, A.R. Zimmerman, B.L. Newalkar, S. Komarneni, S.L. Brantley, and J. Chorover, J. Porous Mater. 9, 243 (2002).

    Article  Google Scholar 

  30. U. Kuila and M. Prasad, Geophys. Prospect. 61, 341 (2013).

    Article  Google Scholar 

  31. C.C. Wang, L.C. Juang, T.C. Hsu, C.K. Lee, J.F. Lee, and F.C. Huang, J. Colloid Interface Sci. 273, 80 (2004).

    Article  Google Scholar 

  32. W. Stumm and J.J. Morgan, Aquatic Chemistry, 3rd ed. (New York: Wiley, 1996), pp. 844–845.

    Google Scholar 

  33. J.F. Lee, C.K. Lee, and L.C. Juang, J. Colloid Interface Sci. 217, 172 (1999).

    Article  Google Scholar 

  34. S.J. Park, D.I. Seo, and C. Nah, J. Colloid Interface Sci. 251, 225 (2002).

    Article  Google Scholar 

  35. M. Ma, G. Wang, Z. Yang, S. Huang, W. Guo, and Y. Shen, Adv. Mater. Sci. Eng. 2015, 907539 (2015). doi:10.1155/2015/907539.

  36. Y. Yao, D. Liu, D. Tang, S. Tang, and W. Huang, Int. J. Coal Geol. 73, 27 (2008).

    Article  Google Scholar 

  37. C.K. Lee, C.C. Wang, L.C. Juang, M.D. Lyu, S.H. Hung, and S.S. Liu, Colloids Surf. A 317, 164 (2008).

    Article  Google Scholar 

  38. P.G. Weidler, G. Degovics, and P. Laggner, J. Colloid Interface Sci. 197, 1 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Víctor Varcárcel acknowledges the support of the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2013C099) and the International Science and Technology Cooperation Program of China (No. 2014DFA2014DFA53020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Rubinos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4354 kb)

Supplementary material 2 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubinos, D.A., Valcárcel, V., Spagnoli, G. et al. Microstructural Characterization of Red Mud as Affected by Inorganic and Organic Chemicals Permeation. JOM 69, 1607–1612 (2017). https://doi.org/10.1007/s11837-017-2301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2301-2

Keywords

Navigation