Skip to main content
Log in

Development of 70/30 Poly-L-DL-Lactic Acid Filaments for 3D Printers (Part 2): Mechanical and Surface Properties of Bioabsorbable Printed Plates for Biomedical Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical, chemical, roughness and wettability properties of 70/30 poly (L,DL-lactide acid) three-dimensional (3D)-printed surgical plates made with extruded polymer filaments developed in the first part of this work were investigated. The plates were printed with horizontal (HRZ) and vertical (VRT) running layer orientations and evaluated by tensile, Fourier transform infrared (FTIR), optical perfilometry and wettability tests before and after degradation in simulated body fluid (SBF) for 21 days. The results show that the ultimate tensile strength (UTS) of HRZ plates before immersion in SBF was higher (34.1 MPa) than that of VRT plates (31.8 MPa). The Young’s modulus (E) of HRZ plates and VRT plates are similar (4 GPa). After immersion in SBF, the UTS of HRZ plates dropped to 20.5 MPa and E decreased to 3.3 GPa. VRT were not tested after SBF immersion due to the large degradation. FTIR analysis showed no evidence of chemical change in the plates after immersion in SBF. The roughness parameter R3z of VRT surfaces (19.54 µm) was higher than that of the HRZ surfaces (12.80 µm). The roughness parameters increased after degradation in SBF (p = 0.7048). The contact angles of HRZ surfaces before immersion in SBF (66.28°) were higher than after immersion in SBF (18.12°); the same behavior was also observed in VRT plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.R. Krijnen, M.G. Mullender, T.H. Smit, V. Everts, and P.I.J.M. Wuisman, Spine 31, 1559–1567 (2006).

    Article  Google Scholar 

  2. T.H. Smit, T.A.P. Engels, P.I.J.M. Wuisman, and L.E. Govaert, Spine 33, 14–18 (2008).

    Article  Google Scholar 

  3. M.S. Park, H.E. Aryan, B.M. Ozgur, R. Jandial, and W.R. Taylor, Neurosurgery 54, 631–635 (2004).

    Article  Google Scholar 

  4. K.A. Thomas, J.M. Toth, N.R. Crawford, H.B. Seim, L.L. Shi, M.B. Harris, and A.S. Turner, Spine 33, 734–742 (2008).

    Article  Google Scholar 

  5. P.I.J.M. Wuisman and T.H. Smit, Eur. Spine J. 15, 133–148 (2006).

    Article  Google Scholar 

  6. A.C. Renouf-Glauser, J. Rose, D. Farrar, and R.E. Cameron, Biomaterials 26, 2415–2422 (2005).

    Article  Google Scholar 

  7. M.J. Kaab, B.A. Rahn, A. Weiler, R. Curtis, S.M. Perren, and E. Schneider, Int J Care Injured 33, 37–42 (2002).

    Article  Google Scholar 

  8. Y. Kang, Y. Yao, G. Yin, Z. Huang, X. Liao, X. Xu, and G. Zhao, Med. Eng. Phys. 31, 589–594 (2009).

    Article  Google Scholar 

  9. A. Gerber and S. Gogolewski, Int J Care Injured 33, 43–57 (2002).

    Article  Google Scholar 

  10. H. Xu, D. Han, J.-S. Dong, G.-X. Shen, G. Chai, Z.-Y. Yu, W.-J. Lang, and S.-T. Ai, Int. J. Med. Robot. Comput. Assist. Surg. 6, 66–72 (2010).

    Article  Google Scholar 

  11. Z. Mustafa and K.E. Tanner, Composites for hard tissue repair. Wiley Encyclopedia of Composites, ed. A. Borzacchiello and L. Nicolais (New York: Wiley, 2012),

    Google Scholar 

  12. A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, and R. Muller, Acta Biomater. 7, 907–920 (2011).

    Article  Google Scholar 

  13. T. Kokubo and H. Takadama, Biomaterials 27, 2907–2915 (2006).

    Article  Google Scholar 

  14. I. Grizzi, H. Garreau, S. Li, and M. Vert, Biomaterials 16, 305–311 (1995).

    Article  Google Scholar 

  15. S. Li, H. Garreau, and M. Vert, Biomaterials 13, 594–600 (1992).

    Article  Google Scholar 

  16. S. Shaffer, K. Yang, J. Vargas, M.A. Di Prima, and W. Voit, Polymer 55, 5969–5979 (2014).

    Article  Google Scholar 

  17. D. Garlotta, J. Polym. Environ. 9, 63–84 (2002).

    Article  Google Scholar 

  18. M. Therin and P. Christel, Biomaterials 13, 594–600 (1992).

    Article  Google Scholar 

  19. E. Hendrick and M. Frey, J. Eng. Fib. Fab. 9, 153–164 (2014).

    Google Scholar 

  20. M.E. Rebovich, D. Vynias, and M.W. Frey, Int J Fashion Des Tech Educ 3, 129–134 (2010).

    Article  Google Scholar 

  21. M.E.R. Coimbra, C.N. Elias, and P.G. Coelho, J. Mater. Sci. Mater. Med. 19, 3227–3234 (2008).

    Article  Google Scholar 

  22. V. Ella, M.E. Gomes, R.L. Reis, P. Tormala, and M. Kellomaki, J. Mater. Sci. Mater. Med. 18, 1253–1261 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Carlos Chagas Foundation for Research Support from the Rio de Janeiro State (FAPERJ) and the National Council of Technological and Scientific Development from Brazilian Government (CNPq) for supporting this study via Grants: E-26/201.759/2015, E-26/201.828/2015, E-26/010.001.262/2015 and 449472-2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, D.J., Vidal, R., Assayag, A. et al. Development of 70/30 Poly-L-DL-Lactic Acid Filaments for 3D Printers (Part 2): Mechanical and Surface Properties of Bioabsorbable Printed Plates for Biomedical Applications. JOM 69, 78–83 (2017). https://doi.org/10.1007/s11837-016-2153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2153-1

Keywords

Navigation