Skip to main content
Log in

Atomic-Scale Studies of Defect Interactions with Homo- and Heterophase Interfaces

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Interfaces are planar metastable defects with singular features capable of controlling diverse material properties, including mechanical response and the microstructure evolution in materials under irradiation. This ability of interfaces to dictate the material response resides inherently in their atomic structure, which controls the interactions of dislocations as well as point and defect clusters with the interface. We recently showed how dislocations nucleated from defect clusters interact with a heterophase interface in Cu–Nb layered composites. We also showed how the ability of the interface to absorb vacancy clusters depends on the atomic structure at the interface. Herein, we elaborate on the effect of the atomic structure on the ability of the interface to absorb dislocations as well as vacancy and self-interstitial defect clusters. We study a physical-vapor-deposited Kurdjumov–Sachs orientation in a Cu–Nb interface and an asymmetric \(\Sigma \)11 grain boundary in pure Cu. On the one hand, the manner in which dislocations react with the interface depends on the misfit dislocation arrangement, which substantially differs between these two cases. On the other hand, vacancy and self-interstitial clusters are absorbed similarly upon interaction with both structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.W. Siegel, S.M. Chang, and R.W. Balluffi, Acta Metall. 28, 249 (1980)

    Article  Google Scholar 

  2. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd edn. (Krieger, Malabar, 1982)

    Google Scholar 

  3. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon, Oxford, 1995)

    Google Scholar 

  4. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung, Philos. Mag. A 82, 643 (2002)

    Google Scholar 

  5. J. Hirth, R. Pond, R. Hoagland, X.-Y. Liu, and J. Wang, Prog. Mater. Sci. 58, 749 (2013)

    Article  Google Scholar 

  6. I.J. Beyerlein, M. Demkowicz, A. Misra, and B. Uberuaga, Prog. Mater. Sci. 74, 125 (2015)

    Article  Google Scholar 

  7. R. Zhang, J. Wang, I. Beyerlein, A. Misra, and T. Germann, Acta Mater. 60, 2855 (2012)

    Article  Google Scholar 

  8. I.J. Beyerlein, J. Wang, and R. Zhang, APL Mater. 1, 032112 (2013)

    Article  Google Scholar 

  9. I.J. Beyerlein, J. Wang, and R. Zhang, Acta Mater. 61, 7488 (2013)

    Article  Google Scholar 

  10. I.J. Beyerlein, A. Caro, M. Demkowicz, N. Mara, A. Misra, and B. Uberuaga, Mater. Today 16, 443 (2013)

    Article  Google Scholar 

  11. M.J. Demkowicz, A. Misra, and A. Caro, Curr. Opin. Solid State Mater. Sci. 16, 101 (2012)

    Article  Google Scholar 

  12. X.-Y. Liu, B.P. Uberuaga, M.J. Demkowicz, T.C. Germann, A. Misra, and M. Nastasi, Phys. Rev. B 85, 012103 (2012)

    Article  Google Scholar 

  13. W.Z. Han, M.J. Demkowicz, N.A. Mara, E.G. Fu, S. Sinha, A.D. Rollett, Y.Q. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra, Adv. Mater. 25, 6975 (2013)

    Article  Google Scholar 

  14. W.Z. Han, M.J. Demkowicz, E.G. Fu, Y.Q. Wang, and A. Misra, Acta Mater. 60, 6341 (2012)

    Article  Google Scholar 

  15. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005)

    Article  Google Scholar 

  16. N. Li, M. Nastasi, and A. Misra, Int. J. Plast. 32–33, 1 (2012)

    Article  Google Scholar 

  17. A. Misra, X. Zhang, M. J. Demkowicz, R. G. Hoagland, and M. Nastasi, Mater. Res. Soc. Symp. Proc. 1188 (2009)

  18. A. Misra, M.J. Demkowicz, J. Wang, and R.G. Hoagland, JOM 60, 39 (2008)

    Article  Google Scholar 

  19. X. Zhang, E.G. Fu, A. Misra, and M.J. Demkowicz, JOM 62, 75 (2010)

    Article  Google Scholar 

  20. A. Misra, J.P. Hirth, and H. Kung, Philos. Mag. A 82, 2935 (2002)

    Article  Google Scholar 

  21. J. Wang, R. Hoagland, and A. Misra, Scripta Mater. 60, 1067 (2008)

    Article  Google Scholar 

  22. M.J. Demkowicz, R.G. Hoagland, B.P. Uberuaga, and A. Misra, Phys. Rev. B 84, 104102 (2011)

    Article  Google Scholar 

  23. A. Misra, J. Hirth, and R. Hoagland, Acta Mater. 53, 4817 (2005)

    Article  Google Scholar 

  24. D.L. Medlin, M.J. Demkowicz, and E.A. Marquis, JOM 62, 52 (2010)

    Article  Google Scholar 

  25. X.-M. Bai, L. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga, Phys. Rev. B 85, 214103 (2012)

    Article  Google Scholar 

  26. N.A. Mara and I.J. Beyerlein, J. Mater. Sci. 49, 6497 (2014)

    Article  Google Scholar 

  27. B.P. Uberuaga, L.J. Vernon, E. Martinez, and A.F. Voter, Sci. Rep. 5, 9095 (2015)

    Article  Google Scholar 

  28. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  Google Scholar 

  29. L. Zhang, E. Martinez, A. Caro, X.-Y. Liu, and M.J. Demkowicz, Model. Simul. Mater. Sci. Eng. 21, 025005 (2013)

    Article  Google Scholar 

  30. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, and A.F. Voter, Phys. Rev. B 63, 224106 (2001)

    Article  Google Scholar 

  31. I.J. Beyerlein, J. Wang, and R.F. Zhang, Appl. Phys. Lett. Mater. 1, 032112 (2013)

    Google Scholar 

  32. A. Stukowski and K. Albe, Model. Simul. Mater. Sci. Eng. 18, 085001 (2010)

    Article  Google Scholar 

  33. E. Martínez, A. Caro, and I.J. Beyerlein, Phys. Rev. B 90, 054103 (2014)

    Article  Google Scholar 

  34. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  35. E. Martinez and B.P. Uberuaga, Sci. Rep. 5, 9084 (2015)

    Article  Google Scholar 

  36. E. Martinez, B.P. Uberuaga, and I.J. Beyerlein, Phys. Rev. B 93, 054105 (2016)

    Article  Google Scholar 

  37. K. Kolluri and M.J. Demkowicz, Phys. Rev. B 82, 193404 (2010)

    Article  Google Scholar 

  38. M.J. Caturla, N. Soneda, E. Alonso, B.D. Wirth, T.D. de la Rubia, and J.M. Perlado, J. Nucl. Mater. 276, 13 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the US Department of Energy (DOE) through the LANL/LDRD Program for this work. This research used resources provided by the LANL Institutional Computing Program. LANL, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under Contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, E., Uberuaga, B.P. & Beyerlein, I.J. Atomic-Scale Studies of Defect Interactions with Homo- and Heterophase Interfaces. JOM 68, 1616–1624 (2016). https://doi.org/10.1007/s11837-016-1887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1887-0

Keywords

Navigation