Skip to main content
Log in

Computer Simulation of the Mechanical Behaviour of Implanted Biodegradable Stents in a Remodelling Artery

  • Published:
JOM Aims and scope Submit manuscript

An Erratum to this article was published on 11 February 2016

Abstract

Coronary stents have revolutionised the treatment of coronary artery disease. While coronary artery stenting is now relatively mature, significant scientific and technological challenges still remain. One of the most fertile technological growth areas is biodegradable stents; here, there is the possibility to generate stents that will break down in the body once the initial necessary scaffolding period is past (6–12 months) (Grogan et al. in Acta Biomater 7:3523, 2011) and when the artery has remodelled (including the formation of neo-intima). A stent angioplasty computational test-bed has been developed by the authors, based on the Abaqus software (DS-SIMULIA, USA), capable of simulating stent tracking, balloon expansion, recoil and in vivo loading in a atherosclerotic artery model. Additionally, a surface corrosion model to simulate uniform and pitting corrosion of biodegradable stents and a representation of the active response of the arterial tissue following stent implantation, i.e. neointimal remodelling, has been developed. The arterial neointimal remodelling simulations with biodegradable stent corrosion demonstrate that the development of new arterial tissue around the stent struts has a substantial effect on the mechanical behaviour of degrading stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Grogan, B.J. O’Brien, S.B. Leen, and P.E. McHugh, Acta Biomater. 7, 3523 (2011).

    Article  Google Scholar 

  2. J.A. Grogan, S.B. Leen, and P.E. McHugh, Biomaterials 34, 8049 (2013).

    Article  Google Scholar 

  3. N. Patel and A.P. Banning, Heart 99, 1236 (2013).

    Article  Google Scholar 

  4. M. Haude, R. Erbel, P. Erne, S. Verheye, H. Degen, D. Bose, P. Vermeersch, I. Wijnbergen, N. Weissman, F. Prati, R. Waksman, and J. Koolen, Lancet 9, 836 (2013).

    Article  Google Scholar 

  5. R.N. Shirazi, F. Aldabbagh, A. Erxleben, Y. Rochev, and P. McHugh, Acta Biomater. 10, 4695 (2014).

    Article  Google Scholar 

  6. C. Conway, F. Sharif, J.P. McGarry, and P.E. McHugh, Cardiovasc. Eng. Technol. 3, 374 (2012).

    Article  Google Scholar 

  7. C. Conway, J.P. McGarry, and P.E. McHugh, Ann. Biomed. Eng. 42, 2425 (2014).

    Article  Google Scholar 

  8. C. Lally and P.J. Prendergast, Mechanics of Biological Tissue, ed. G. Holzapfel and R. Ogden (Heidelberg: Springer, 2006), p. 255.

    Chapter  Google Scholar 

  9. R. Waksman, F. Prati, N. Bruining, M. Haude, D. Böse, H. Kitabata, P. Erne, S. Verheye, H. Degen, P. Vermeersch, L. Di Vito, J. Koolen, and R. Erbel, Circ. Cardiovasc. Interv. 6, 644 (2013).

    Article  Google Scholar 

  10. H. Kitabata, R. Waksman, and B. Warnack, Cardiovasc. Revasc. Med. 15, 109 (2014).

    Article  Google Scholar 

  11. E.L. Boland, R. Shine, N. Kelly, C.A. Sweeney, and P. E. McHugh, Ann. Biomed. Eng. (2015). doi:10.1007/s10439-015-1413-5.

    Google Scholar 

  12. G.A. Holzapfel, G. Sommer, C.T. Gasser, and P. Regitnig, Am. J. Physiol. Heart Circ. Physiol. 289, H2048 (2005).

    Article  Google Scholar 

  13. F. Gervaso, C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, and F. Migliavacca, J. Biomech. 41, 1206 (2008).

    Article  Google Scholar 

  14. M.T. Walsh, E.M. Cunnane, J.J. Mulvihill, A.C. Akyildiz, F.J.H. Gijsen, and G.A. Holzapfel, J. Biomech. 47, 793 (2014).

    Article  Google Scholar 

  15. M. Maeng, L.O. Jensen, E. Falk, H.R. Andersen, and L. Thuesen, Heart 95, 241 (2009).

    Article  Google Scholar 

  16. J.E. Schaffer, Ph.D. thesis, Purdue University, Indiana, 2012.

Download references

Acknowledgements

The authors would like to acknowledge funding from the Irish Research Council for Science, Engineering and Technology and the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enda L. Boland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boland, E.L., Grogan, J.A., Conway, C. et al. Computer Simulation of the Mechanical Behaviour of Implanted Biodegradable Stents in a Remodelling Artery. JOM 68, 1198–1203 (2016). https://doi.org/10.1007/s11837-015-1761-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1761-5

Keywords

Navigation