Skip to main content
Log in

Online Anode Current Signal in Aluminum Reduction Cells: Measurements and Prospects

  • Published:
JOM Aims and scope Submit manuscript

Abstract

There have been ongoing efforts into the study of the process signals of aluminum reduction cell control and operation. Anode currents provide one of the most valuable signals and the most likely to be measured. In this article, the commonly used methods of online anode current measurements are briefly introduced. Then, a new approach is proposed to improve measurements of anode currents based on the principle of measuring “isometric voltage drop” at the anode beam. Industrial tests in 400 kA cells demonstrate that the system runs steadily in the harsh environment, and the online anode current signal adequately characterizes the reduction process behavior. Study of the anode current is of great importance for improving the pot control and operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.P. Bearne, JOM 51, 16 (1999).

    Article  Google Scholar 

  2. T. Holmes, Light Metals 1995, ed. J.W. Evans (Warrendale: TMS, 1995), pp. 371–373.

    Google Scholar 

  3. W.E. Haupin, J. Electrochem. Soc. 103, 174 (1956).

    Article  Google Scholar 

  4. M.M. Hyland, E.C. Patterson, F. Stevens-McFadden, and B.J. Welch, Scand. J. Metall. 30, 404 (2001).

    Article  Google Scholar 

  5. P. Coursol, P. Coulombe, S. Gosselin, D. Lavoie, J.M. Simard, J. Marks, and S. Fardeau, JOM 63, 109 (2011).

    Article  Google Scholar 

  6. A.A.M. Nazatul, M.P. Taylor, J.J.J. Chen, and B.R. Young, CACE 35, 2457 (2011).

    Google Scholar 

  7. Z.X. Qiu, J.J. Li, X.L. Cui, K. Grjotheim, H. Kvande, and H.A. Øye, JOM 46, 28 (1994).

    Article  Google Scholar 

  8. H. Viumdal and S. Mylvaganam, JOM 62, 18 (2010).

    Article  Google Scholar 

  9. M.S. Jiang, Q.M. Sui, F. Miao, L. Jia, and P. Peng, J. Cent. South. Univ. T 20, 924 (2013).

    Article  Google Scholar 

  10. L. Meng, Q.M. Sui, and L. Jia, ISEA 10, 21 (2011).

    Google Scholar 

  11. J.Q. Zhang, N.J. Zhou, and H.S. Li, JOM 62, 35 (2010).

    Article  MathSciNet  Google Scholar 

  12. K.Å. Rye, I. Solberg, T. Eidet, and S. Rolseth, Light Metals 2001, ed. J.L. Anjier (Warrendale: TMS, 2001), pp. 529–533.

    Google Scholar 

  13. Y.F. Wang, L.F. Zhang, and X.J. Zuo, Metall. Mater. Trans. B 42B, 1051 (2011).

    Article  Google Scholar 

  14. D.C. Chesonis, S.T. Johansen, S. Rolseth, and J. Thonstad, J. Appl. Electrochem. 19, 703 (1989).

    Article  Google Scholar 

  15. H.L. Zhang, S. Yang, H.H. Zhang, J. Li, and Y.J. Xu, JOM 66, 1210 (2014).

    Article  Google Scholar 

  16. G.C. Barber, Ph.D. Thesis, Department of Chemical and Materials Engineering, The University of Auckland, 1992.

  17. G. Bearne, D. Gadd, and S. Lix, Light Metals 2007, ed. M. Sørlie (Warrendale: TMS, 2007), pp. 305–310.

    Google Scholar 

  18. C.Y. Cheung, C. Menictas, J. Bao, M. Skyllas-Kazacos, and B.J. Welch, Ind. Eng. Chem. Res. 52, 9632 (2013).

    Article  Google Scholar 

  19. J.T. Keniry, G.C. Barber, M.P. Taylor, and B.J. Welch, Light Metals 2001, ed. J.L. Anjier (Warrendale: TMS, 2001), pp. 1225–1232.

    Google Scholar 

  20. R.M. Hvidsten and K. Rye, Light metals 2008, ed. D.H. Deyoung (Warrendale: TMS, 2008), pp. 329–331.

    Google Scholar 

  21. K.Å. Rye, M. Königsson, and I. Solberg, Light Metals 1998, ed. B.J. Welch (Warrendale: TMS, 1998), pp. 241–246.

    Google Scholar 

  22. J.P.R. Huni, Light Metals 1986, ed. C.E. Suarez (Warrendale: TMS, 2011), pp. 199–203.

    Google Scholar 

  23. Ch Wieser, A. Helmbold, and E. Gülzow, J. Appl. Electrochem. 30, 803 (2000).

    Article  Google Scholar 

  24. J. Barclay and J. Rieg, Light Metals 2001, ed. J.L. Anjier (Warrendale: TMS, 2001), pp. 1219–1224.

    Google Scholar 

  25. J.W. Evans and N. Urata, Light Metals 2012, ed. C.E. Suarez (Warrendale: TMS, 2012), pp. 939–942.

    Chapter  Google Scholar 

  26. M.H. Schneider, J.W. Evans, D. Ziegler, P.K. Wright, and D.A. Steingart, Light Metals 2005, ed. H. Kvande (Warrendale: TMS, 2005), pp. 407–412.

    Google Scholar 

  27. D.A. Steingart, J.W. Evans, P.K. Wright, and D. Ziegler, Light Metals 2008, ed. D.H. Deyoung (Warrendale: TMS, 2008), pp. 333–338.

    Google Scholar 

  28. N. Urata and J.W. Evans, Light Metals 2010, ed. J.A. Johnson (Warrendale: TMS, 2010), pp. 473–478.

    Google Scholar 

  29. A. Lützerath, J.W. Evans, and R. Victor, Light Metals 2014, ed. J. Grandfield (Warrendale: TMS, 2014), pp. 739–741.

    Chapter  Google Scholar 

  30. J. Keniry and E. Shaidulin, Light Metals 2008, ed. D.H. Deyoung (Warrendale: TMS, 2008), pp. 287–292.

    Google Scholar 

  31. N. Richards, H. Gudbrandsen, S. Rolseth, and J. Thonstad, Light Metals 2003, ed. P.N. Crepeau (Warrendale: TMS, 2003), pp. 315–322.

    Google Scholar 

  32. D. Whitfield, M. Skyllas-Kazacos, B.J. Welch, and F.S. McFadden, Light Metals 2004, ed. A.T. Tabereaux (Warrendale: TMS, 2004), pp. 249–255.

    Google Scholar 

  33. G. Tarcy and A.T. Tabereaux, Light Metals 2011, ed. S.J. Lindsay (Warrendale: TMS, 2011), pp. 329–332.

    Google Scholar 

  34. J. Thonstad, T.A. Utigard, and H. Vogt, Light Metals 2000, ed. D.R. Peterson (Warrendale: TMS, 2000), pp. 825–837.

    Google Scholar 

  35. B. Sulmont, S. Fardeau, E. Barrioz, and P. Marcellin, Light Metals 2006, ed. T.J. Galloway (Warrendale: TMS, 2006), pp. 325–329.

    Google Scholar 

  36. A.A.M. Nazatul, M.P. Taylor, J.J.J. Chen, and M.A. Stam, Control. Eng. Pract. 19, 367 (2011).

    Article  Google Scholar 

  37. J. Tessier, C. Duchesne, G.P. Tarcy, C. Gauthier, and G. Dufour, Light Metals 2008, ed. D.H. Deyoung (Warrendale: TMS, 2008), pp. 319–324.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (51274241, 51104187 and 61321003), and the Fundamental Research Funds for the Central Universities of Central South University (2014zzts027). Assistance from HANGZHOU JINZHANG GROUP is particularly acknowledged for the opportunity to do measurements on JINLIAN smelters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zou, Z., Li, J. et al. Online Anode Current Signal in Aluminum Reduction Cells: Measurements and Prospects. JOM 68, 623–634 (2016). https://doi.org/10.1007/s11837-015-1738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1738-4

Keywords

Navigation