Skip to main content

Advertisement

Log in

Preparation of Ferrotitanium from Ilmenite by Electrolysis-Assisted Calciothermic Reduction in CaCl2-NaCl Molten Salt

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electrolysis-assisted calciothermic reduction method is proposed and successfully used to prepare ferrotitanium alloy from ilmenite by using equal-molar CaCl2-NaCl molten salt as electrolyte, molybdenum rod as cathode, and graphite as anode at 973 K with cell voltages of 3.2–4.4 V under inert atmosphere. Thermodynamics analysis of the process is presented, and the products obtained are examined with x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. It is demonstrated that the calciothermic reduction of ilmenite is a stepwise process since intermediate CaTiO3 is observed in the products partially reduced. In the calciothermic reduction process, the reduction of FeTiO3 first gives rise to the formation of Fe and CaTiO3, which as intermediates will further react with calcium metal to form ferrotitanium alloys. This is in good agreement with the prediction of thermodynamics. Experimental results also show that increasing cell voltage can accelerate the formation of calcium metal through electrolysis of CaO and CaCl2 and, hence, promote the calciothermic reduction of ilmenite. As the electrolytic zone and reduction zone are combined in the same bath, the theoretical energy requirement for the production of FeTi in the calciothermic process is lower than that in the aluminothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Panigrahi, P.K. Paramguru, R.C. Gupta, E. Shibata, and T. Nakamura, High Temp. Mat. Process. -Isr. 29, 495 (2010).

    Google Scholar 

  2. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Int. J. Hydrog. Energy 32, 1121 (2007).

    Article  Google Scholar 

  3. M. Panigrahi, E. Shibata, A. Iizuka, and T. Nakamura, Electrochim. Acta 93, 143 (2013).

    Article  Google Scholar 

  4. M. Panigrahi, A. Iizuka, E. Shibata, and T. Nakamura, J. Alloys Compd. 550, 545 (2013).

    Article  Google Scholar 

  5. A.A. Francis and A.A. EI-Midany, J. Mater. Process. Technol. 199, 279 (2008).

    Article  Google Scholar 

  6. N.J. Welham, Miner. Eng. 9, 1189 (1996).

    Article  Google Scholar 

  7. V.M. Sokolov, V.D. Babyuk, Y.A. Zhydkov, and Y.Y. Skok, Miner. Eng. 21, 143 (2008).

    Article  Google Scholar 

  8. G.Z. Chen, Miner. Process. Extr. Metall. (Trans. Inst. Min. Metall. C) 124, 106 (2014).

    Google Scholar 

  9. M. Hu, C. Bai, X. Liu, X.I. Lv, and J. Du, J. Min. Metall. B 47, 193 (2011).

    Article  Google Scholar 

  10. X. Liu, M. Hu, C. Bai, and X. Lv, High Temp. Mater. Process. -Isr. 33, 377 (2014).

    Google Scholar 

  11. G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature 407, 361 (2000).

    Article  Google Scholar 

  12. R.O. Suzuki, J. Phys. Chem. Solids 66, 461 (2005).

    Article  Google Scholar 

  13. K. Ono and R.O. Suzuki, JOM 54, 59 (2002).

    Article  Google Scholar 

  14. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono, Mater. Trans. JIM 32, 485 (1991).

    Article  Google Scholar 

  15. R.O. Suzuki and S. Fukui, Mater. Trans. 45, 1665 (2004).

    Article  Google Scholar 

  16. A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray, Chem. Rev. 113, 2863 (2013).

    Article  Google Scholar 

  17. R.O. Suzuki and S. Inous, Metall. Mater. Trans. B 34, 277 (2003).

    Article  Google Scholar 

  18. R.O. Suzuki, K. One, and K. Teranuma, Metall. Mater. Trans. B 34, 287 (2003).

    Article  Google Scholar 

  19. R.O. Suzuki, JOM 59, 68 (2007).

    Article  Google Scholar 

  20. R.O. Suzuki, M. Aizawa, and K. Ono, J. Alloys Compd. 288, 173 (1999).

    Article  Google Scholar 

  21. M. Baba, Y. Ono, and R.O. Suzuki, J. Phys. Chem. Solids 66, 466 (2005).

    Article  Google Scholar 

  22. T. Kikuchi, M. Yoshida, S. Matsuura, S. Natsui, E. Tsuji, H. Habazaki, and R.O. Suzuki, J. Phys. Chem. Solids 75, 1041 (2014).

    Article  Google Scholar 

  23. J. Jia, B. Xu, B. Yang, D. Wang, and D. Liu, JOM 65, 630 (2013).

    Article  Google Scholar 

  24. M. Peretti, JOM 61, 44 (2009).

    Article  Google Scholar 

  25. A. Martin, D. Lambertin, J.C. Poignet, M. Allibert, G. Bourges, L. Pescayre, and J. Fouletier, JOM 55, 52 (2003).

    Article  Google Scholar 

  26. D.A. Wenz, I. Johnson, and R.D. Wolson, J. Chem. Eng. Data 14, 250 (1969).

    Article  Google Scholar 

  27. K.M. Axler and G.L. DePoorter, Mater. Sci. Forum 73, 19 (1991).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support of the National Natural Science Foundation of China (Project Nos. 51274108 and 21263007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Hua, Y., Xu, C. et al. Preparation of Ferrotitanium from Ilmenite by Electrolysis-Assisted Calciothermic Reduction in CaCl2-NaCl Molten Salt. JOM 68, 532–539 (2016). https://doi.org/10.1007/s11837-015-1723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1723-y

Keywords

Navigation