Skip to main content
Log in

Relaxation, Structure, and Properties of Semicoherent Interfaces

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Materials containing a high density of interfaces are promising candidates for future energy technologies because interfaces acting as sources, sinks, and barriers for defects can improve mechanical and irradiation properties of materials. A semicoherent interface widely occurring in various materials is composed of a network of misfit dislocations and coherent regions separated by misfit dislocations. In this article, we review the relaxation mechanisms, structure, and properties of (111) semicoherent interfaces in face-centered cubic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Chen, E.G. Fu, K.Y. Yu, M. Song, Y. Liu, Y.Q. Wang, H. Wang, and X. Zhang, J. Mater. Res. 30, 1300 (2015).

    Article  Google Scholar 

  2. Y. Chen, K.Y. Yu, Y. Liu, S. Shao, H. Wang, M.A. Kirk, J. Wang, and X. Zhang, Nat. Commun. 6, 7036 (2015).

    Article  Google Scholar 

  3. G.E. Dieter, Mechanical Metallurgy, 3rd ed. (New York: McGraw-Hill, 1976), pp. 184–240.

    Google Scholar 

  4. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  5. J. Wang and Curr Misra, Opin. Solid State Mater. Sci. 18, 19 (2014).

    Article  Google Scholar 

  6. Y. Liu, D. Bufford, H. Wang, C. Sun, and X. Zhang, Acta Mater. 59, 1924 (2011).

    Article  Google Scholar 

  7. A. Misra, J.P. Hirth, and H. Kung, Philos. Mag. 82, 2935 (2002).

    Article  Google Scholar 

  8. R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann, Scr. Mater. 65, 1022 (2011).

    Article  Google Scholar 

  9. R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann, Acta Mater. 60, 2855 (2012).

    Article  Google Scholar 

  10. J. Wang, C.Z. Zhou, I.J. Beyerlein, and S. Shao, JOM 66, 102 (2014).

    Article  Google Scholar 

  11. J.M. Howe, R.C. Pond, and J.P. Hirth, Prog. Mater. Sci. 54, 792 (2009).

    Article  Google Scholar 

  12. N. Li, J. Wang, A. Misra, and J.Y. Huang, Microsc. Microanal. 18, 1155 (2012).

    Article  Google Scholar 

  13. P.M. Anderson, T. Foecke, and P.M. Hazzledine, MRS Bull. 24, 27 (1999).

    Google Scholar 

  14. Q. Li and P.M. Anderson, Acta Mater. 53, 1121 (2005).

    Article  Google Scholar 

  15. J.S. Carpenter, A. Misra, and P.M. Anderson, Acta Mater. 60, 2625 (2012).

    Article  Google Scholar 

  16. S. Shao, H.M. Zbib, I. Mastorakos, and D.F. Bahr, J. Eng. Mater. Technol. 135, 021001 (2013).

    Article  Google Scholar 

  17. S. Shao, H.M. Zbib, I. Mastorakos, and D.F. Bahr, J. App. Phys. 112, 044307 (2012).

    Article  Google Scholar 

  18. F.C. Frank, Acta Metal. 1, 15 (1953).

    Article  Google Scholar 

  19. B.A. Bilby, R. Bullough, and E. Smith, Proc. R. Soc. Lond. A 231, 263 (1955).

    Article  MathSciNet  Google Scholar 

  20. R. Bullough, Philos. Mag. 12, 1139 (1965).

    Article  Google Scholar 

  21. J.P. Hirth and R.W. Balluffi, Acta Metal. 21, 929 (1973).

    Article  Google Scholar 

  22. R.C. Pond and D.S. Vlachavas, Proc. R. Soc. Lond. A 386, 95 (1983).

    Article  MathSciNet  Google Scholar 

  23. D. Mitlin, A. Misra, T.E. Mitchell, J.P. Hirth, and R.G. Hoagland, Philos. Mag. 85, 3379 (2004).

    Article  Google Scholar 

  24. Y. Liu, D. Bufford, S. Rios, H. Wang, J. Chen, J.Y. Zhang, and X. Zhang, J. App. Phys. 111, 073526 (2012).

    Article  Google Scholar 

  25. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, and J. Wang, Prog. Mater. Sci. 58, 749 (2013).

    Article  Google Scholar 

  26. J. Wang, R.G. Hoagland, X.Y. Liu, and A. Misra, Acta Mater. 59, 3164 (2011).

    Article  Google Scholar 

  27. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 3109 (2008).

    Article  Google Scholar 

  28. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).

    Article  Google Scholar 

  29. A. Misra, M.J. Demkowicz, J. Wang, and R.G. Hoagland, JOM 60, 39 (2008).

    Article  Google Scholar 

  30. P.M. Anderson and Z. Li, Mater. Sci. Eng. A 319–321, 182 (2001).

    Article  Google Scholar 

  31. Y. Shen and P.M. Anderson, J. Mech. Phys. Solids 55, 956 (2007).

    Article  MATH  Google Scholar 

  32. J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, and A. Misra, Int. J. Plast. 53, 40 (2014).

    Article  Google Scholar 

  33. I.J. Beyerlein, J. Wang, and R.F. Zhang, APL Mater. 1, 032112 (2013).

    Article  Google Scholar 

  34. I.J. Beyerlein, J. Wang, and R.F. Zhang, Acta Mater. 61, 7488 (2013).

    Article  Google Scholar 

  35. S. Shao, J. Wang, A. Misra, and R.G. Hoagland, Sci. Rep. 3, 2448 (2013).

    Google Scholar 

  36. Z.F. Di, X.M. Bai, Q.M. Wei, J.H. Won, R.G. Hoagland, Y.Q. Wang, A. Misra, B.P. Uberuaga, and M. Nastasi, Phys. Rev. B 84, 052101 (2011).

    Article  Google Scholar 

  37. N. Li, J. Wang, Y.Q. Wang, Y. Serruyz, M. Nastasi, and A. Misra, J. App. Phys. 113, 023508 (2013).

    Article  Google Scholar 

  38. M. Rose, A.G. Balogh, and H. Hahn, Nucl. Instrum. Methods Phys. Res. B 127/128, 119 (1997).

    Article  Google Scholar 

  39. Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, and S. Okuda, J. Nucl. Mater. 297, 355 (2001).

    Article  Google Scholar 

  40. E. Martínez and A. Caro, Phys. Rev. B 86, 214109 (2012).

    Article  Google Scholar 

  41. E. Martínez, J.P. Hirth, M. Nastasi, and A. Caro, Phys. Rev. B 85, 060101(R) (2012).

    Article  Google Scholar 

  42. K. Kolluri and M.J. Demkowicz, Phys. Rev. B 85, 205416 (2012).

    Article  Google Scholar 

  43. S. Shao, J. Wang, and A. Misra, J. App. Phys. 116, 023508 (2014).

    Article  Google Scholar 

  44. I. Salehinia, S. Shao, J. Wang, and H.M. Zbib, Acta Mater. 86, 331 (2015).

    Article  Google Scholar 

  45. S. Shao, J. Wang, A. Misra, and R.G. Hoagland, Mater. Sci. Forum 783-786, 515 (2014).

    Article  Google Scholar 

  46. S. Shao, J. Wang, I.J. Beyerlein, and A. Misra, Acta Mater. 98, 206 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

S. Shao and J. Wang acknowledge the support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J. Wang also acknowledges the support provided by the Los Alamos National Laboratory Directed Research and Development (LDRD-ER20140450) and the start-up provided by the University of Nebraska-Lincoln. The valuable discussion with Prof. A. Misra, I. J. Beyerlein, J. P. Hirth, Richard G. Hoagland, and Robert Pond is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Wang, J. Relaxation, Structure, and Properties of Semicoherent Interfaces. JOM 68, 242–252 (2016). https://doi.org/10.1007/s11837-015-1691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1691-2

Keywords

Navigation