Skip to main content
Log in

Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, J. Mater. Sci. 26, 1137 (1991).

    Article  Google Scholar 

  2. L.C. Davis and B.E. Artz, J. Appl. Phys. 77, 4954 (1995).

    Article  Google Scholar 

  3. D.B. Miracle, Compos. Sci. Technol. 65, 2526 (2005).

    Article  Google Scholar 

  4. N. Gupta, D.D. Luong, and K. Cho, Metals 2, 238 (2012).

    Article  Google Scholar 

  5. P. Rohatgi, JOM 43, 10 (1991).

    Article  Google Scholar 

  6. S. Rawal, JOM 53, 14 (2001).

    Article  Google Scholar 

  7. C. Zweben, JOM 44, 15 (1992).

    Article  Google Scholar 

  8. R. Schaller, J. Alloys Compd. 355, 131 (2003).

    Article  Google Scholar 

  9. S. Sastry, M. Krishna, and J. Uchil, J. Alloys Compd. 314, 268 (2001).

    Article  Google Scholar 

  10. P.Y. Li, S.L. Dai, S.C. Chai, and Y.R. Li, Scr. Mater. 42, 955 (2000).

    Article  Google Scholar 

  11. D.W. James, Mater. Sci. Eng. 4, 1 (1969).

    Article  Google Scholar 

  12. K. Nishiyama, R. Matsui, Y. Ikeda, S. Niwa, and T. Sakaguchi, J. Alloys Compd. 355, 22 (2003).

    Article  Google Scholar 

  13. M. Marya, L.G. Hector, R. Verma, and W. Tong, Mater. Sci. Eng. A 418, 341 (2006).

    Article  Google Scholar 

  14. S. Celotto, Acta Mater. 48, 1775 (2000).

    Article  Google Scholar 

  15. I.S. Golovin and H.R. Sinning, J. Alloys Compd. 355, 2 (2003).

    Article  Google Scholar 

  16. M.X. Zhang and P.M. Kelly, Scr. Mater. 48, 647 (2003).

    Article  Google Scholar 

  17. H. Chandler, Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys (Materials Park: ASM International, 1996), p. 196.

    Google Scholar 

  18. D. Luong, V.C. Shunmugasamy, J. Cox, N. Gupta, and P.K. Rohatgi, JOM 66, 312 (2014).

    Article  Google Scholar 

  19. Z. Zhang, X. Zeng, and W. Ding, Mater. Sci. Eng. A 392, 150 (2005).

    Article  Google Scholar 

  20. R. González-Martínez, J. Göken, D. Letzig, K. Steinhoff, and K.U. Kainer, J. Alloys Compd. 437, 127 (2007).

    Article  Google Scholar 

  21. J.-H. Jun, J. Alloys Compd. 610, 169 (2014).

    Article  Google Scholar 

  22. A.-W. El-Morsy and A.I.Z. Farahat, Sci. World J. 2015, 1 (2015).

    Article  Google Scholar 

  23. N. Gupta and P.K. Rohatgi, Metal Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications (Lancaster: DEStech, 2014).

    Google Scholar 

  24. N. Gupta, S. Zeltmann, V. Shunmugasamy, and D. Pinisetty, JOM 66, 245 (2014).

    Article  Google Scholar 

  25. N. Gupta, and V.C. Shunmugasamy, Multifunctional Syntactic Foams (USPTO, US Patent—US20150031793 A1, 2015).

  26. V. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. 47, 5596 (2012).

    Article  Google Scholar 

  27. V. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. 49, 180 (2014).

    Article  Google Scholar 

  28. W. Jiejun, L. Chenggong, W. Dianbin, and G. Manchang, Compos. Sci. Technol. 63, 569 (2003).

    Article  Google Scholar 

  29. M.C. Gui, D.B. Wang, J.J. Wu, G.J. Yuan, and C.G. Li, Mater. Sci. Eng. A 286, 282 (2000).

    Article  Google Scholar 

  30. A. Luo, JOM 54, 42 (2002).

    Article  Google Scholar 

  31. A.A. Kaya, Physical Metallurgy of Magnesium, ed. M.O. Pekguleryuz, K.U. Kainer, and A.A. Kaya (Woodhead Publishing: Cambridge, 2013), p. 33.

  32. I.G. Ritchie, Z.-L. Pan, K.W. Sprungmann, H.K. Schmidt, and R. Dutton, Can. Metall. Q. 26, 239 (1987).

    Article  Google Scholar 

  33. K.P. Menard, Dynamic Mechanical Analysis: A Practical Introduction (Boca Raton: CRC Press, 1999), p. 1.

    Book  Google Scholar 

  34. V. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. 48, 1685 (2013).

    Article  Google Scholar 

  35. K. Hazeli, A. Sadeghi, M.O. Pekguleryuz, and A. Kontsos, Mater. Sci. Eng. A 589, 275 (2014).

    Article  Google Scholar 

  36. N. Srikanth, X.L. Zhong, and M. Gupta, Mater. Lett. 59, 3851 (2005).

    Article  Google Scholar 

  37. H. Lu, X. Wang, T. Zhang, Z. Cheng, and Q. Fang, Mater. 2, 958 (2009).

    Article  Google Scholar 

  38. O.A. Lambri, W. Riehemann, and Z. Trojanová, Scr. Mater. 45, 1365 (2001).

    Article  Google Scholar 

  39. A. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Article  MATH  Google Scholar 

  40. H. Watanabe, T. Mukai, M. Sugioka, and K. Ishikawa, Scr. Mater. 51, 291 (2004).

    Article  Google Scholar 

  41. L. Liao, X. Zhang, H. Wang, X. Li, and N. Ma, J. Alloys Compd. 429, 163 (2007).

    Article  Google Scholar 

  42. S.-W. Liu, H.-C. Jiang, X.-Y. Li, and L.-J. Rong, Trans. Nonferrous Met. Soc. China 20, 453 (2010).

    Article  Google Scholar 

  43. G.L. Hao, F.S. Han, Q.Z. Wang, and J. Wu, Phys. B 391, 186 (2007).

    Article  Google Scholar 

  44. L. Lucke and A. Granato, Dislocations and Mechanical Properties of Crystals (New York: Wiley, 1956), p. 425.

    Google Scholar 

  45. J. Gu, X. Zhang, Y. Qiu, and M. Gu, Compos. Sci. Technol. 65, 1736 (2005).

    Article  Google Scholar 

  46. X. Zhang, L. Liao, N. Ma, and H. Wang, Compos. Part A-Appl 37, 2011 (2006).

    Article  Google Scholar 

  47. Z. Xiuqing, L. Lihua, M. Naiheng, and W. Haowei, Mater. Lett. 60, 600 (2006).

    Article  Google Scholar 

  48. Y.W. Wu, K. Wu, K.K. Deng, K.B. Nie, X.J. Wang, M.Y. Zheng, and X.S. Hu, Mater. Des. 31, 4862 (2010).

    Article  Google Scholar 

  49. Y.W. Wu, K. Wu, K.K. Deng, K.B. Nie, X.J. Wang, X.S. Hu, and M.Y. Zheng, J. Alloys Compd. 506, 688 (2010).

    Article  Google Scholar 

  50. G.A. Rocha, B.F. Schultz, J.B. Ferguson, N. Gupta, and P.K. Rohatgi, J. Mater. Res. 28, 2426 (2013).

    Article  Google Scholar 

  51. H. Anantharaman, V.C. Shunmugasamy, O.M. Strbik III, N. Gupta, and K. Cho, Int. J. Impact Eng 82, 14 (2015).

    Article  Google Scholar 

  52. P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, and A. Daoud, Compos. Part A 37, 430 (2006).

    Article  Google Scholar 

  53. M. Labella, S.E. Zeltmann, V.C. Shunmugasamy, N. Gupta, and P.K. Rohatgi, Fuel 121, 240 (2014).

    Article  Google Scholar 

  54. P.K. Rohatgi, D. Weiss, and N. Gupta, JOM 58, 71 (2006).

    Article  Google Scholar 

  55. D. Lehmhus, A. von Hehl, K. Kayvantash, R. Gradinger, T. Becker, K. Schimanski, and M. Avalle, Mater. Des. B 66, 385 (2015).

    Article  Google Scholar 

  56. D.D. Luong, N. Gupta, and P.K. Rohatgi, Aluminum/fly Ash Syntactic Foams: Synthesis, Microstructure and Properties, ed. A. Tiwari and S.K. Shukla (New York: Wiley, 2014).

  57. G.H. Wu, Z.Y. Dou, L.T. Jiang, and J.H. Cao, Mater. Lett. 60, 2945 (2006).

    Article  Google Scholar 

  58. Y. Mu, G. Yao, and H. Luo, Mater. Des. 31, 1007 (2010).

    Article  Google Scholar 

  59. D.D. Luong, V.C. Shunmugasamy, N. Gupta, D. Lehmhus, J. Weise, and J. Baumeister, Mater. Des. 66, 516 (2015).

    Article  Google Scholar 

  60. L. Peroni, M. Scapin, M. Avalle, J. Weise, D. Lehmhus, J. Baumeister, and M. Busse, Adv. Eng. Mater. 14, 909 (2012).

    Article  Google Scholar 

  61. D. Luong, N. Gupta, and P. Rohatgi, JOM 63, 48 (2011).

    Google Scholar 

  62. Y.W. Wu, K. Wu, K.K. Deng, K.B. Nie, X.J. Wang, X.S. Hu, and M.Y. Zheng, Mater. Sci. Eng. A 527, 6816 (2010).

    Article  Google Scholar 

  63. Y.W. Wu, K. Wu, K.B. Nie, K.K. Deng, X.S. Hu, X.J. Wang, and M.Y. Zheng, Mater. Sci. Eng. A 527, 7873 (2010).

    Article  Google Scholar 

  64. J. Zhang, R.J. Perez, and E.J. Lavernia, Acta Metall. Mater. 42, 395 (1994).

    Article  Google Scholar 

  65. L. Licitra, D.D. Luong, O.M. Strbik III, and N. Gupta, Mater. Des. 66, 504 (2014).

    Article  Google Scholar 

  66. J. Cox, D.D. Luong, V.C. Shunmugasamy, N. Gupta, O.M. Strbik III, and K. Cho, Metals 4, 530 (2014).

    Article  Google Scholar 

  67. J. Gu, X. Zhang, and M. Gu, J. Alloys Compd. 385, 104 (2004).

    Article  Google Scholar 

  68. J. Zhang, R.J. Perez, M. Gupta, and E.J. Lavernia, Script. Metall. Mater. 28, 91 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

One author (N.G.) acknowledges the U.S. Army Research Laboratory Cooperative Agreement W911NF-11-2-0096 with NYU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanth Chakravarthy Shunmugasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shunmugasamy, V.C., Mansoor, B. & Gupta, N. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications. JOM 68, 279–287 (2016). https://doi.org/10.1007/s11837-015-1680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1680-5

Keywords

Navigation