Skip to main content
Log in

Phase Transitions and Atomic-Scale Migration During the Preoxidation of a Titania/Ferrous Oxide Solution

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The non-isothermal preoxidation of the titania/ferrous oxide solution (TFOS) was investigated between 300°C and 1200°C. To explore the TFOS preoxidation mechanism, the phase transitions, crystal structure behavior, subreactions, and atomic-scale migration and enrichment of the TFOS during preoxidation were studied. Two different titanium and iron solutions were distinguished by scanning electron microscopy analysis. The phase transitions from titanomagnetite (TTM) to titanohematite to pseudobrookite (PSB) were indicated by the separation and enrichment of Ti and Fe, which migrated into PSB and hematite, respectively. This occurred alongside the generation and destruction of FeTiO3. Multiple local maxima and shoulders were observed in the double-derivative thermogravimetric curves during the preoxidation process, indicating the existence and initial reaction temperatures of five stages of subreactions. Compared with the theoretical mass gain (3.28 wt.%), only 80.8 at.% of the Fe2+ was oxidized to Fe3+, leaving unoxidized TTM in the solid solution during non-isothermal oxidation at 1200°C. The concentration of Ti gradually increased in the lamellar structures. However, Fe, Al, and O were mostly restricted to the homogeneous regions. The segregation of Mg only became obvious when TFOS was oxidized at high temperatures. The enrichment reduced the impact of Ti when O migrated during the reduction process, thus, enhancing the reducibility of the TFOS after preoxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.A. Bowles, M.J. Jackson, T.S. Berquó, P.A. Sølheid, and J.S. Gee, Nat. Commun. 4, 1916 (2013).

    Article  Google Scholar 

  2. T. Katsura, Pac. Sci. 18, 223 (1962).

    Google Scholar 

  3. J.B. Wright, N. Z. J. Geol. Geophys. 7, 424 (1964).

    Article  Google Scholar 

  4. P. Ayyub, M. Multani, M. Barma, V.R. Palkar, and R. Vijayaraghavan, J. Phys. C Solid State Phys. 21, 2229 (1988).

    Article  Google Scholar 

  5. R. Zboril, M. Mashlan, and D. Petridis, Chem. Mater. 14, 969 (2002).

    Article  Google Scholar 

  6. C. Pascal, J.L. Pascal, and F. Favier, Chem. Mater. 11, 141 (1999).

    Article  Google Scholar 

  7. J.L. Dormann, N. Viart, J.L. Rehspringer, A. Ezzir, and D. Niznansky, Hyperfine Interact. 112, 89 (1998).

    Article  Google Scholar 

  8. C. Cannas, D. Gatteschi, A. Musinu, G. Piccaluga, and C. Sangregorio, J. Phys. Chem. B 102, 7721 (1998).

    Article  Google Scholar 

  9. J.B. Goodenough and A.L. Loeb, Phys. Rev. 98, 391 (1955).

    Article  Google Scholar 

  10. B. Gillot, Vib. Spectrosc. 6, 127 (1994).

    Article  Google Scholar 

  11. S. Akimoto, J. Geomagn. Geoelectr. 6, 1 (1954).

    Article  Google Scholar 

  12. S. Akimoto, T. Katsura, and M. Yoshida, J. Geomagn. Geoelectr. 9, 165 (1957).

    Article  Google Scholar 

  13. W. Oreilly and S.K. Banerjee, Phys. Lett. 3, 237 (1965).

    Article  Google Scholar 

  14. B.A. Wechsler, D.H. Lindsley, and C.T. Prewitt, Am. Mineral. 69, 754 (1984).

    Google Scholar 

  15. Z. Kakol, J. Sabol, and J.M. Honig, Phys. Rev. B Condens. Matter Mater. Phys. 43, 649 (1991).

    Article  Google Scholar 

  16. H.H. Hamdeh, K. Barghout, J.C. Ho, P.M. Shand, and L.L. Miller, J. Magn. Magn. Mater. 191, 72 (1999).

    Article  Google Scholar 

  17. F. Bosi, U. Halenius, and H. Skogby, Am. Mineral. 94, 181 (2009).

    Article  Google Scholar 

  18. C.I. Pearce, C.M.B. Henderson, N.D. Telling, R.A.D. Pattrick, J.M. Charnock, V.S. Coker, E. Arenholz, F. Tuna, and G. van der Laan, Am. Mineral. 95, 425 (2010).

    Article  Google Scholar 

  19. E. Park and O. Ostrovski, ISIJ Int. 44, 74 (2004).

    Article  Google Scholar 

  20. E. Park and O. Ostrovski, ISIJ Int. 44, 999 (2004).

    Article  Google Scholar 

  21. E. Park and O. Ostrovski, ISIJ Int. 43, 1316 (2003).

    Article  Google Scholar 

  22. R. Paunova, Metall. Mater. Trans. B 33, 633 (2002).

    Article  Google Scholar 

  23. R.J. Longbottom, O. Ostrovski, J. Zhang, and D. Young, Metall. Mater. Trans. B 38, 175 (2007).

    Article  Google Scholar 

  24. Y. Wang and Z. Yuan, Int. J. Miner. Process. 81, 133 (2006).

    Article  Google Scholar 

  25. G.L. Schwebel, D. Filippou, G. Hudon, M. Tworkowski, A. Gipperich, and W. Krumm, Appl. Energy 113, 1902 (2014).

    Article  Google Scholar 

  26. C.S. Kucukkaragoz and R.H. Eric, Miner. Eng. 19, 334 (2006).

    Article  Google Scholar 

  27. Y. Wang, Z. Yuan, Z. Guo, Q. Tan, Z. Li, and W. Jiang, Trans. Nonferrous Met. Soc. China 18, 962 (2008).

    Article  Google Scholar 

  28. G.D. McAdam, Ironmak. Steelmak. 1, 138 (1974).

    Google Scholar 

  29. G.D. McAdam, R.E.A. Dall, and T. Marshall, N. Z. J. Sci. 12, 669 (1969).

    Google Scholar 

  30. G.D. McAdam, R.E.A. Dall, and T. Marshall, N. Z. J. Sci. 12, 649 (1969).

    Google Scholar 

  31. X. Wei, L.X. Gang, Z.X. Li, W.X. Mei, and D.W. Zhong, Trans. Nonferrous Met. Soc. China 23, 2439 (2013).

    Article  Google Scholar 

  32. L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, ISIJ Int. 46, 458 (2006).

    Article  Google Scholar 

  33. L. Chen, J. Li, R.O. Rye, W.M. Benzel, H.A. Lowers, and M. He, Mineral. Petrol. 107, 487 (2013).

    Article  Google Scholar 

  34. A. Hekmat-Ardakan and F. Ajersch, Acta Mater. 58, 3422 (2010).

    Article  Google Scholar 

  35. G. Xiang Ping, X. De Xian, W. Xiang Bin, Z. Gu Chang, L. Jian Qing, H. Kenich, and H. Ji Wu, Eur. J. Mineral. 25, 177 (2013).

    Article  Google Scholar 

  36. A.J. Wall, R. Mathur, J.E. Post, and P.J. Heaney, Ore Geol. Rev. 42, 62 (2011).

    Article  Google Scholar 

  37. Y. Singh, R. Viswanathan, P.S. Parihar, and P.B. Maithani, J. Geol. Soc. India 81, 79 (2013).

    Article  Google Scholar 

  38. V.M. Kazanskii, J. Eng. Phys. 10, 393 (1966).

    Article  Google Scholar 

  39. N. Li, P. Hu, X. Zhang, Y. Liu, and W. Han, Corros. Sci. 73, 44 (2013).

    Article  Google Scholar 

  40. M. Kim, H. Lee, and Y. Kang, Metall. Mater. Trans. B 45, 131 (2014).

    Article  Google Scholar 

  41. B. Gillot and F. Jemmali, J. Mater. Sci. 21, 4436 (1986).

    Article  Google Scholar 

  42. P.Á. Szilágyi, J. Madarász, E. Kuzmann, A. Vértes, G. Molnár, A. Bousseksou, V.K. Sharma, and Z. Homonnay, Thermochim. Acta 479, 53 (2008).

    Article  Google Scholar 

  43. J.P. Sanders and P.K. Gallagher, Thermochim. Acta 406, 241 (2003).

    Article  Google Scholar 

  44. J.P. Sanders and P.K. Gallagher, J. Therm. Anal. Calorim. 72, 777 (2003).

    Article  Google Scholar 

  45. K. Li, X. Huang, C. Fleischmann, G. Rein, and J. Ji, Energy Fuel. 28, 6130 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Key Basic Research and Development Program of China (Grant No. 2011BAC01B02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Yang Wang or Jian-Liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZY., Zhang, JL., Xing, XD. et al. Phase Transitions and Atomic-Scale Migration During the Preoxidation of a Titania/Ferrous Oxide Solution. JOM 68, 656–667 (2016). https://doi.org/10.1007/s11837-015-1678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1678-z

Keywords

Navigation