Skip to main content
Log in

Analysis of Complex Steel Microstructures by High-Resolution EBSD

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-resolution electron backscattered diffraction (HR-EBSD) is a powerful tool to describe microstructures at the sub-micrometric scale that achieves a higher degree of angular accuracy compared with conventional EBSD. However, such an EBSD technique is time-consuming and requires data-intensive computing to save and postprocess the results obtained after each scan. In the current work, a simple strategy to transform conventional results into high-resolution results is put forward in an averaging statistical layout. This makes it possible to measure the misorientations more precisely and, subsequently, the geometrically necessary dislocations by lowering the typical noise generated from Hough transformation-based conventional EBSD. Different steel microstructures are analyzed in light of this strategy. The calculated dislocation densities for those microstructures are used as input values for evaluating the initial dislocation density contribution to the yield strength in a newly developed mechanical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Krauss, Steels: Processing, Structure, and Performance (Materials Park, OH: ASM International, 2005), pp. 111–112.

    Google Scholar 

  2. P. Cizek, B.P. Wynne, C.H.J. Davies, and P.D. Hodgson, Met. Mater. Trans. A 46A, 407 (2015).

    Article  Google Scholar 

  3. H.K.D.H. Bhadeshia and J.W. Christian, Metall. Trans. A 21A, 767 (1990).

    Article  Google Scholar 

  4. A. Iza-Mendia and I. Gutiérrez, Mater. Sci. Eng. A 561, 40 (2013).

    Article  Google Scholar 

  5. D.P. Field, P.B. Trivedi, S.I. Wright, and M. Kumar, Ultramicroscopy 103, 33 (2005).

    Article  Google Scholar 

  6. M. Kamaya, Ultramicroscopy 111, 189 (2011).

    Article  Google Scholar 

  7. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010).

    Article  Google Scholar 

  8. L.N. Brewer, D.P. Field, and C.C. Merriman, Electron Backscatter Diffraction in Materials Science, 2nd ed., ed. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field (New York: Springer, 2009), pp. 251–262.

    Chapter  Google Scholar 

  9. N.C. Krieger Lassen, K. Conradsen, and D. Juul Jensen, Scan. Micrsc. 6, 115 (1992).

    Google Scholar 

  10. A.J. Wilkinson, Scripta Mater. 44, 2379 (2001).

    Article  Google Scholar 

  11. J. Kacher, C. Landon, B.L. Adams, and D. Fullwood, Ultramicroscopy 109, 1148 (2009).

    Article  Google Scholar 

  12. C. Maurice, R. Quey, R. Fortunier, and J.H. Driver, Microstructural Design of Advanced Engineering Materials, ed. D.A. Molodov (Weinheim: Wiley, 2013), pp. 339–365.

    Chapter  Google Scholar 

  13. J. Jiang, T.B. Britton, and A.J. Wilkinson, Acta Mater. 61, 7227 (2013).

    Article  Google Scholar 

  14. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Acta Mater. 59, 4387 (2011).

    Article  Google Scholar 

  15. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga, Metall. Mater. Trans. A 45A, 4960 (2014).

    Article  Google Scholar 

  16. J. Alkorta, Ultramicroscopy 131, 33 (2013).

    Article  Google Scholar 

  17. J. Basinger, D. Fullwood, J. Kacher, and B. Adams, Micr. Microanal. 17, 330 (2011).

    Article  Google Scholar 

  18. C. Maurice, K. Dzieciol, and R. Fortunier, Ultramicroscopy 111, 140 (2011).

    Article  Google Scholar 

  19. T.B. Britton, C. Maurice, R. Fortunier, J.H. Driver, A.P. Day, G. Meaden, D.J. Dingley, K. Mingard, and A.J. Wilkinson, Ultramicroscopy 110, 1443 (2010).

    Article  Google Scholar 

  20. L.P. Kubin and A. Mortensen, Scripta Mater. 48, 119 (2003).

    Article  Google Scholar 

  21. K. Zhu, D. Barbier, and T. Iung, J. Mater. Sci. 48, 413 (2013).

    Article  Google Scholar 

  22. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Met. Mater. Trans. A 43, 3850 (2012).

    Article  Google Scholar 

  23. S. Dillien, M. Seefeldt, S. Allain, O. Bouaziz, and P. Van Houtte, Mater. Sci. Eng. A 527, 947 (2010).

    Article  Google Scholar 

  24. D.A. Korzekwa, D.K. Matlock, and G. Krauss, Metall. Trans. A 15A, 1221 (1984).

    Article  Google Scholar 

  25. P.J. Wray, Metall. Trans. A 15, 2041 (1984).

    Article  Google Scholar 

  26. E.V. Nesterova, S. Bouvier, and B. Bacroix, Mater. Character. 100, 152 (2015).

    Article  Google Scholar 

  27. M. Takahashi and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 6, 592 (1990).

    Article  Google Scholar 

  28. I.A. Yakubtsov, J.D. Boyd, W.J. Liu, and E. Essadiqui, Proceedings of the 42nd Mechanical Working and Steel Processing Conference (Toronto, ON: ISS/AIME, 2000), pp. 429–439.

Download references

Acknowledgement

The financial support of the Spanish Ministry of Economy and Competitiveness (MAT2012-31056) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pello Uranga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isasti, N., Jorge-Badiola, D., Alkorta, J. et al. Analysis of Complex Steel Microstructures by High-Resolution EBSD. JOM 68, 215–223 (2016). https://doi.org/10.1007/s11837-015-1677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1677-0

Keywords

Navigation