Skip to main content
Log in

Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, the Ni-46.1Al-7.8Mo (at.%) alloy was directionally solidified at different growth rates ranging from 15 μm/s to 1000 μm/s under a constant temperature gradient (334 K/cm). The dependence of microstructural length scales on the growth rate was investigated. The results show that, with the growth rate increasing, the primary dendritic arm spacings (PDAS) and secondary dendritic arm spacings (SDAS) decreased. There exists a large distribution range in PDAS under directional solidification conditions at a constant temperature gradient. The average PDAS and SDAS as a function of growth rate can be given as λ1 = 848.8967 V−0.4509 and λ2 = 64.2196 V−0.4140, respectively. In addition, a comparison of our results with the current theoretical models and previous experimental results has also been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Poirier, Metall. Trans. B 18, 245 (1987).

    Article  Google Scholar 

  2. N. Maraşlı, K. Keşlioğlu, B. Arslan, H. Kaya, and E. Çadırlı, J. Mater. Process. Technol. 202, 145 (2008).

    Article  Google Scholar 

  3. E. Çadırlı, I. Karaca, H. Kaya, and N. Maraşlı, J. Cryst. Growth 255, 190 (2003).

    Article  Google Scholar 

  4. G.L. Ding, W.D. Huang, X. Huang, X. Lin, and Y.H. Zhou, Acta Mater. 44, 3705 (1996).

    Article  Google Scholar 

  5. J.A. Warren and J.S. Langer, Phys. Rev. E 47, 2702 (1993).

    Article  Google Scholar 

  6. Y.Z. Zhou and A. Volek, Scr. Mater. 56, 537 (2007).

    Article  Google Scholar 

  7. D. Ma, W. Xu, S.C. Ng, and Y. Li, Mater. Sci. Eng., A 390, 52 (2005).

    Article  Google Scholar 

  8. H. Kaya, E. Çadırlı, K. Keşlioğlu, and N. Maraşlı, J. Cryst. Growth 276, 583 (2005).

    Article  Google Scholar 

  9. J.D. Hunt, Solidification and casting of metals (London: The Metals Society, 1979), pp. 3–9.

    Google Scholar 

  10. W. Kurz and J.D. Fisher, Acta Metall. 29, 11 (1981).

    Article  Google Scholar 

  11. R. Trivedi, Metall. Mater. Trans. A 15, 977 (1984).

    Article  MathSciNet  Google Scholar 

  12. J.D. Hunt and S.Z. Lu, Metall. Mater. Trans. A 27, 611 (1996).

    Article  Google Scholar 

  13. R. Trivedi and K. Somboonsuk, Mater. Sci. Eng., A 65, 65 (1984).

    Article  Google Scholar 

  14. D. Bouchard and J.S. Kirkaldy, Metall. Mater. Trans. B 28, 651 (1997).

    Article  Google Scholar 

  15. M. Li, T. Mori, and H. Iwasaki, Mater. Sci. Eng., A 265, 217 (1999).

    Article  Google Scholar 

  16. Q.Y. Pan, W.D. Huang, X. Lin, and Y.H. Zhou, J. Cryst. Growth 181, 109 (1997).

    Article  Google Scholar 

  17. X.W. Hu, S.M. Li, W.J. Chen, S.F. Gao, L. Liu, and H.Z. Fu, J. Alloys Compd. 484, 631 (2009).

    Article  Google Scholar 

  18. N. Maraşlı, K. Keşlioğlu, B. Arslan, H. Kaya, and E. Çadırlı, J. Mater. Process. Technol. 202, 145 (2008).

    Article  Google Scholar 

  19. J. Feng, W.D. Huang, X. Lin, Q.Y. Pan, T. Li, and Y.H. Zhou, J. Cryst. Growth 197, 393 (1999).

    Article  Google Scholar 

  20. G.Y. An and L.X. Liu, J. Cryst. Growth 80, 383 (1987).

    Article  Google Scholar 

  21. J. Hui, R. Tiwari, X. Wu, S.N. Tewari, and R. Trivedi, Metall. Mater. Trans. A 33, 3499 (2002).

    Article  Google Scholar 

  22. M. Barth, B. Wei, and D.M. Herlach, Mater. Sci. Eng., A 226–228, 770 (1997).

    Article  Google Scholar 

  23. S.V. Raj, I.E. Locci, J.A. Salem, and R.J. Pawlik, Metall. Mater. Trans. A 33, 597 (2002).

    Article  Google Scholar 

  24. P.L. Ferrandini, F.L.G.U. Araujo, W.W. Batista, and R. Caram, J. Cryst. Growth 275, 147 (2005).

    Article  Google Scholar 

  25. J.F. Zhang, J. Shen, Z. Shang, L. Wang, and H.Z. Fu, Mater. Charact. 99, 160 (2015).

    Article  Google Scholar 

  26. S.F. Gao, L. Liu, Y.K. Xu, C.B. Yang, J. Zhang, and H.Z. Fu, China Foundry 9, 160 (2012).

    Google Scholar 

  27. Z.X. Min, J. Shen, Y.L. Xiong, W. Wang, Y.J. Du, L. Liu, and H.Z. Fu, Acta Metall. Sin. 47, 397 (2011).

    Google Scholar 

  28. A.B. Kloosterman and J.T.H.M. Hosson, J. Mater. Sci. 32, 6201 (1997).

    Article  Google Scholar 

  29. D. Ma, Y. Li, S.C. Ng, and H. Jones, Acta Metall. 48, 419 (2000).

    Google Scholar 

  30. C.M. Klaren, J.D. Verhoeven, and R. Trivedi, Metall. Trans. A 11, 1853 (1980).

    Article  Google Scholar 

  31. H.Z. Fu, L. Liu, J.J. Guo, and J.S. Li, Directional solidification and processing of advanced materials (Beijing: Beijing Science Press, 2008), p. 687.

    Google Scholar 

  32. N. Marasli and J.D. Hunt, Acta Mater. 44, 1085 (1996).

    Article  Google Scholar 

  33. J.Q. Li and Y.L. Tang, J. Alloys Compd. 329, 157 (2001).

    Article  Google Scholar 

  34. E. Çadırlı, N. Maraslı, B. Bayender, and M. Gündüz, Mater. Res. Bull. 35, 985 (2000).

    Article  Google Scholar 

  35. V. Seetharaman, L.M. Fabietti, and R. Trivedi, Metall. Trans. A 20, 2567 (1989).

    Article  Google Scholar 

  36. C. Cicutti and R. Boeri, Scr. Mater. 45, 1455 (2001).

    Article  Google Scholar 

  37. M. Wolf (Paper presented to the Continuous Casting, Iron and Steel Society of AIME, Varrendale, 1997, pp. 259–269).

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (No. 51564041), the Natural Science Foundation of Inner Mongolia of China (No. 2014MS0518), the Inner Mongolia University of Science and Technology Industry-Study-Research Found (No. PY201509), and the Inner Mongolia University of Science and Technology Innovation Fund (No. 2012NCL004) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, X., Ren, H. et al. Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy. JOM 68, 178–184 (2016). https://doi.org/10.1007/s11837-015-1671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1671-6

Keywords

Navigation