Skip to main content
Log in

Effects of Growth Rates and Compositions on Dendrite Arm Spacings in Directionally Solidified Al-Zn Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dendritic spacing can affect microsegregation profiles and also the formation of secondary phases within interdendritic regions, which influences the mechanical properties of cast structures. To understand dendritic spacings, it is important to understand the effects of growth rate and composition on primary dendrite arm spacing (λ 1) and secondary dendrite arm spacing (λ 2). In this study, aluminum alloys with concentrations of (1, 3, and 5 wt pct) Zn were directionally solidified upwards using a Bridgman-type directional solidification apparatus under a constant temperature gradient (10.3 K/mm), resulting in a wide range of growth rates (8.3–165.0 μm/s). Microstructural parameters, λ 1 and λ 2 were measured and expressed as functions of growth rate and composition using a linear regression analysis method. The values of λ 1 and λ 2 decreased with increasing growth rates. However, the values of λ 1 increased with increasing concentration of Zn in the Al-Zn alloy, but the values of λ 2 decreased systematically with an increased Zn concentration. In addition, a transition from a cellular to a dendritic structure was observed at a relatively low growth rate (16.5 μm/s) in this study of binary alloys. The experimental results were compared with predictive theoretical models as well as experimental works for dendritic spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.H. Zhu: Metall. Mater. Trans. A, 2004, vol. 45, pp.3083–3097.

    Google Scholar 

  2. S. Popovié and B.Grzetz: Croat. Chem. Acta, 1999, vol. 72, pp.621– 643.

    Google Scholar 

  3. M. Hansen, (Ed.): Constitution of Binary Alloys, Mcgraw-Hill, London, 1958.

    Google Scholar 

  4. F. Gonzales and M. Rappaz: Metall. Mater. Trans. A, 2006, vol. 37, pp.2797–2806.

    Article  Google Scholar 

  5. F. Gonzales and M. Rappaz: Metall. Mater. Trans. A, 2008, vol. 39, pp.2148–2160.

    Article  Google Scholar 

  6. M. Rheme, F. Gonzales, and M. Rappaz: Scripta Mater., 2008, vol. 59, pp.440–443.

    Article  Google Scholar 

  7. H. Xu, L. D. Xu, and Q. Han: Scripta Mater., 2006, vol. 54, pp.2191–2196.

    Article  Google Scholar 

  8. K. Osamura, H. Okuda, and S. Ochicu: Scripta Metall., 1985, vol. 19, pp.1379–1384.

    Article  Google Scholar 

  9. W. R. Osorio, J. E. Spinelli, N. Cheung, and A. Garcia: Mater. Sci. Eng. A, 2006, vol. 420, pp.179–186.

    Article  Google Scholar 

  10. W. Cubberly and R. Bakerjian: Tool and Manufacturing Engineers Handbook, Desk Edition, Society of Manufacturing Engineers, Dearborn, Michigan, 1989.

    Google Scholar 

  11. H. S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, and M. Ushio: Mater. Sci. Eng. A, 2004, vol. 371, pp.160–169.

    Article  Google Scholar 

  12. O.V. Flores, C. Kennedy, L.E. Murr, D. Brown, S. Pappu, B.M. Nowak, and J.C. McClure: Scripta Mater., 1998, vol. 38, pp.703–708.

    Article  Google Scholar 

  13. H. Akhyar and Husaini: Int. J. Metalcasting, 2016, vol. 10, pp. 452–56.

  14. M.E. Glicksman and M.B. Koss: Phys. Rev. Lett., 1994, vol. 73, pp.573–576.

    Article  Google Scholar 

  15. E. Üstün, E. Çadırlı, H. Kaya (2006) J. Phys. Condens. Matter 18, 7825–7839.

    Article  Google Scholar 

  16. G.L. Ding, W. Huang, X. Lin, and Y. Zhou: J. Cryst. Growth, 1977, vol. 177, pp.281–288.

    Article  Google Scholar 

  17. L. Makkonen: J. Cryst. Growth, 2000, vol. 208, pp.772–778.

    Article  Google Scholar 

  18. E. Çadırlı, İ. Karaca, H. Kaya, and N. Maraşlı: J. Cryst. Growth, 2003, vol. 255, pp.190–203.

    Article  Google Scholar 

  19. J.E. Spinelli, I.L. Ferreira, and A. Garcia: J. Alloys and Compd., 2004, vol. 384, pp.217–226.

    Article  Google Scholar 

  20. M.D. Peres, C.A. Siqueira, and A. Garcia: J. Alloys and Compd., 2004, vol. 381, pp.168–181.

    Article  Google Scholar 

  21. J.D. Hunt: Solidification and Casting of Metals, The Metal Society, London, 1979.

    Google Scholar 

  22. R. Trivedi: Metall. Trans. A, 1984, vol. 15, pp. 977–982.

    Article  Google Scholar 

  23. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  Google Scholar 

  24. S.Z. Lu and J.D. Hunt: Metall. Mater. Trans. A, 1996, vol. 27, pp.611–623.

    Google Scholar 

  25. D. Bouchard and J.S. Kirkaldy: Metall. Mater. Trans. B, 1996, vol. 27, pp.101–113.

    Article  Google Scholar 

  26. D. Bouchard and J.S. Kirkaldy: Metall. Mater. Trans. B, 1997, vol. 28, pp.651–663.

    Article  Google Scholar 

  27. T. Okamoto and K. Kishitake: J. Cryst. Growth, 1975, vol. 29, pp. 137–146.

    Article  Google Scholar 

  28. C.T. Rios and R. Caram: J. Cryst. Growth, 1997, vol. 174, pp.65–69.

    Article  Google Scholar 

  29. J.S. Langer and H. Müller-Krumbhaar: Acta Metall., 1978, vol. 26, pp.1681–1687.

    Article  Google Scholar 

  30. R. Trivedi and K. Somboonsuk: Mater. Sci. Eng., 1984, vol. 65, pp.65–74.

    Article  Google Scholar 

  31. H. Löffler(Ed.): Structure and Structure Development of Al-Zn Alloys, Akademia Verlag, Berlin, 1995.

    Google Scholar 

  32. J.M. Drezet, B. Mireux, G. Kurtuldu, O. Magdysyuk, and M. Drakopoulos: Mater. Trans. A, 2015, vol. 46, pp.4183–4190.

    Article  Google Scholar 

  33. N.Q. Chinh, P. Jenei, J. Gubicza, E.V. Bobruk, R. Z. Valiev, and T.G. Langdon: Mater. Lett., 2017, vol. 186, pp.334–337.

    Article  Google Scholar 

  34. C.G. Anderson, R.E. Andrews, B.G.I. Dance, M.J. Russel, E.J. Olden, and R.M. Sanderson: Proceedings of the Second International Symposium on Friction Stir Welding, Gothenburg, Sweden, 2000.

  35. K.S. Bang, W.B. Lee, Y.M. Yeon, and S.B. Jung: International Welding/Joining Conference, Gyeongju, Korea, 2002.

    Google Scholar 

  36. P. Ravindranathan and K.C. Patil: J. Mater. Sci., 1987, vol. 22, pp.3261–3264.

    Article  Google Scholar 

  37. F.Y. Hung, T.S.Lui, L. H. Chen, and J.G. You: J. Mater. Sci., 2007, vol. 42, pp.3865–3873.

    Article  Google Scholar 

  38. S. Ganesan, C.L. Chan, and D.R. Poirier: Mater. Sci. Eng. A, 1992, vol. 151, pp.97–105.

    Article  Google Scholar 

  39. M.S. Bhat, D.R. Poirier, and J.C. Heinrich: Metall. Mater. Trans. B, 1995, vol. 26, pp.1049–1056.

    Article  Google Scholar 

  40. A. Berkdemir and M. Gündüz: App. Phys. A, 2009, vol. 96, pp.873–886.

    Article  Google Scholar 

  41. W.R. Osorio and A. Garcia: Mater. Sci. Eng. A, 2002, vol. 325, pp.103–111.

    Article  Google Scholar 

  42. H. Kaya, E. Çadırlı, and M. Gündüz: J. Mater. Eng. Perf., 2007, vol. 16, pp.12–21.

    Article  Google Scholar 

  43. A. Ourdjini, J. Liu, and R. Elliott: Mat. Sci. Tech., 1994, vol. 10, pp.312–318.

    Article  Google Scholar 

  44. H. Löffler: Structure and Structure Development in Al-Zn Alloys, Akademie Verlag, Berlin, 1995.

    Google Scholar 

  45. L. F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworths & Co. Ltd., London, 1976.

    Google Scholar 

  46. Z. Chen, Y. Mo, and Z. Nie: Metall. Mater. Trans. A, 2013, vol. 44, pp.3910–3920.

    Article  Google Scholar 

  47. R. Trivedi and W. Kurz: Metall. Mater. Trans. A, 1990, vol. 21, pp.1311–1318.

    Article  Google Scholar 

  48. R. Trivedi and W. Kurz: Acta Metall., 1994, vol. 42, pp. 15–23.

    Article  Google Scholar 

  49. R. Trivedi and W. Kurz: Int. Mater. Rev., 1994, vol. 39, pp. 49–74.

    Article  Google Scholar 

  50. S.A. David and J.M. Vitek: Int. Mater. Rev., 1989, vol. 34, pp. 213–245.

    Article  Google Scholar 

  51. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Third Edition, Trans Tech Publications, Switzerland, 1989.

    Google Scholar 

  52. S.N. Tewari and V. Laxmanan: Metall. Mater. Trans. A, 1987, vol. 18, pp.167–170.

    Article  Google Scholar 

  53. M. Georgelin and A. Pocheau: Phys. Rev. E, 1998, vol. 57, pp.3189–3203.

    Article  Google Scholar 

  54. S. Liu, G. Yang, L. Xiao, S. Luo, and W. Jie: JOM, 2016, vol. 68, pp. 3214–3223.

    Article  Google Scholar 

  55. K. Wang, S. Lu, G. Mi, C. Li, and H. Fu: China Foundry, 2010, vol. 7, pp.47–51.

    Google Scholar 

  56. A.L.R. Ledesma, R.A.R. Diaz, J.C. Carvayar, O.A. Fregoso, and J.A.J. Islas: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 1391−1398.

    Article  Google Scholar 

  57. R. Trivedi, Y. Shen, and S. Liu: Metall. Mater. Trans. A, 2003, vol. 34, pp.395–401.

    Article  Google Scholar 

  58. J. Fan, X. Li, Y. Su, R. Chen, J. Guo, and H. Fu: App. Phys. A, 2011, vol. 105, pp.239–248.

    Article  Google Scholar 

  59. J. Lapin, L. Ondrus, and M. Nazmy: Intermetallics, 2002, vol. 10, pp.1019–1031.

    Article  Google Scholar 

  60. J. Lapin and Z. Gabalcova: Intermetallics, 2011, vol. 19, pp.797–804.

    Article  Google Scholar 

  61. J. Feng, W.D. Huang, X. Lin, Q.Y. Pan, T. Li, and Y.H. Zhou: J. Cryst. Growth, 1999, vol. 197, pp.393–395.

    Article  Google Scholar 

  62. H.Y. Liu and H. Jones: J. Mater. Sci. Lett., 1992, vol. 11, pp.769–770.

    Article  Google Scholar 

  63. H. Tunca and R.W. Smith: J. Mater. Sci., 1988, vol. 23, pp.111–120.

    Article  Google Scholar 

  64. JE Simpson, SV Garimella, HC Groh, R Abbaschian (2001) J Heat Trans 123:990–998.

    Article  Google Scholar 

  65. H. Ochoa, O. Fornaro, O. Bustos and B. Schulz: Int. J. Cast Met. Res., 2012, vol. 25, pp.201–206.

    Article  Google Scholar 

  66. P.K. Rohatgi and C.M. Adams: Trans. Met. Soc. AIME, 1967, vol. 239, pp.1729–1736.

    Google Scholar 

  67. P.C. Dann, J.A. Eady, and L.M. Hogan: J. Austr. Inst. Met., 1974, vol. 19, pp. 140–147.

    Google Scholar 

  68. J.A.E. Bell and W.C. Winegard: J.Inst. Met., 1963, vol. 92, pp.357–359.

    Google Scholar 

  69. C.M. Claren, J.D. Verhoeven, and R. Trivedi: Metall. Trans. A, 1980, vol. 11, pp. 1853–1861.

    Article  Google Scholar 

  70. B.C. Fuh: Ph.D. Thesis, Iowa, IA, 1984.

  71. J.T. Mason, J.D. Verhoeven, and R. Trivedi: J. Cryst. Growth, 1982, vol. 59, pp. 516–524.

    Article  Google Scholar 

  72. J.A. Juarez Islas, H. Jones, and W. Kurz: Mater. Sci. Eng., 1988, vol. 98, pp. 201–208.

    Article  Google Scholar 

  73. T. Sivarupan, C.H. Caceres, and J.A. Taylor: Metall. Mater. Trans. A, 2013, vol. 44, pp.4071–4080.

    Article  Google Scholar 

  74. K. P. Young and D. H. Kirkwood: Metall. Trans. A, 1975, vol. 6, pp 197–205.

    Article  Google Scholar 

  75. M. El-Bealy and B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27, pp.689–693.

    Article  Google Scholar 

  76. M. Kudoh and B. Wo: Steel Res. Int., 2003, vol. 74, pp 161–167.

    Article  Google Scholar 

  77. M. Paliwal and I.H. Jung: J. Cryst. Growth, 2014, vol. 394, pp.28–38

    Article  Google Scholar 

  78. M.C. Flemings, T.Z. Kattamis, and B.P. Bardes: AFS Trans., 1991, vol. 99, pp. 501–506.

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Erciyes University Scientific Research Project Unit under Contract No: FBD-12-3978. The authors are grateful for this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Gündüz.

Additional information

Manuscript submitted December 4, 2016.

Appendices

Appendix A: λ Values Measured from Longitudinal and Transverse Sections for Al-Zn Alloys

Alloy

Al-1 Wt Pct Zn

Al-3 Wt Pct Zn

Al-5 Wt Pct Zn

V (μm/s)

λ 1L (μm)

λ 1T (μm)

λ 1L (μm)

λ 1T (μm)

λ 1L (μm)

λ 1T (μm)

8.3

53.2 ± 3.75

50.66 ± 2.29

62.39 ± 3.15

55.24 ± 2.65

75.72 ± 3.50

63.56 ± 2.85

16.5

64.40 ± 5.14

57.07 ± 3.49

70.30 ± 3.69

68.96 ± 2.40

108.25 ± 4.86

96.15 ± 3.89

41.3

55.61 ± 5.79

48.69 ± 4.27

63.94 ± 5.68

56.92 ± 3.13

84.91 ± 3.09

78.09 ± 3.01

82.5

44.98 ± 3.02

36.62 ± 2.45

48.02 ± 4.59

44.02 ± 2.19

72.84 ± 4.41

65.48 ± 3.23

165.0

32.49 ± 3.37

30.59 ± 2.33

44.71 ± 2.80

38.25 ± 2.31

53.14 ± 3.23

51.02 ± 2.39

  1. λ 1L: The values of PDAS measured from the longitudinal section of the samples
  2. λ 1T: The values of PDAS measured from the transverse section of the samples

Appendix B: Some Physical Properties of Al-Zn Alloy

Property

Symbol

Unit

Value

References

Melting point

T m

K

933

63

Slope of liquid line

m L

K (wt pct)−1

–2.93

3

Diffusion coefficient (liq.)

D L

μm2 s−1

1200

63

Distribution coefficient

k

 

0.45

63

Gibbs–Thomson coefficient

Γ

μm K

0.105

62

The harmonic perturbations

L

mJ/m2

10

63

Primary dendrite-calibrating factor

a 1

250

64

Characteristic parameter

G oε

K/cm

600 × 6

64

Secondary dendrite-calibrating factor

a 2

9

64

Appendix C: Theoretical Models of λ 1 and λ 2 for the Steady-State Conditions

Theoretical Models

References

\( \lambda_{1} = 2.83[m(k - 1)D\varGamma ]^{0.25} G^{ - 0.5} V^{ - 0.25} C_{\text{o}}^{0.25} \)

Hunt[21]

\( \lambda_{1} = 2.83[m(k - 1)D\varGamma L]^{0.25} G^{ - 0.5} V^{ - 0.25} C_{\text{o}}^{0.25} \)

Trivedi[22]

\( \lambda_{1} = 4.3[m(k - 1)D\varGamma /k^{2} ]^{0.25} G^{ - 0.5} V^{ - 0.25} C_{\text{o}}^{0.25} \)

K–F[23]

\( \lambda_{1} = a_{1} \left( {\frac{{16G_{\text{o}} \varepsilon \varGamma D}}{m(1 - k)}} \right)^{0.5} G^{ - 0.5} V^{ - 0.5} C_{\text{o}}^{0.25} \)

B–K[25,26]

\( \lambda_{1} = 2\varepsilon \left[ {m(k - 1)D} \right]^{0.25} G^{ - 0.5} V^{ - 0.5} C_{\text{o}}^{0.25} \)

O–K[27]

\( \lambda_{2} = \left[ {8\varGamma DL/k\Delta T_{\text{o}} } \right]^{0.5} V^{0.5} = \lambda_{2} = \left[ { - 8\varGamma DL/mk} \right]^{0.5} V^{0.5} C_{\text{o}}^{ - 0.5} \)

T–S[30]

\( \lambda_{2} = 2\pi a_{2} \left( {\frac{{4\sigma D^{2} }}{{(1 - k)^{2} \Delta H}}} \right)^{1/3} V^{ - 0.67} C_{\text{o}}^{ - 0.33} \)

B–K[25,26]

  1. Here m is the liquidus slope, k is the distribution coefficient, D is the diffusion coefficient, Γ is the Gibbs–Thomson constant, ∆T o is the equilibrium freezing range, L is a constant that depends on harmonic perturbation, a 1 is the primary dendrite-calibrating factor, a 2 is the secondary dendrite-calibrating factor, ∆H is the enthalpy of fusion, σ is the solid–liquid interfacial energy, ε is a constant less than unity, G o ε is a characteristic parameter, and C o, G, and V are described in the text

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acer, E., Çadırlı, E., Erol, H. et al. Effects of Growth Rates and Compositions on Dendrite Arm Spacings in Directionally Solidified Al-Zn Alloys. Metall Mater Trans A 48, 5911–5923 (2017). https://doi.org/10.1007/s11661-017-4337-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4337-x

Navigation