Skip to main content
Log in

On the Mechanical Properties of WS2 and MoS2 Nanotubes and Fullerene-Like Nanoparticles: In Situ Electron Microscopy Measurements

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Since the discovery of the first inorganic fullerene-like nanoparticles and nanotubes made of WS2 and then MoS2, many more compounds which produce such nanostructures have been discovered and added to the ever expanding list of this group of the layered nanomaterials. Scaling-up the synthesis of the nano-phases of WS2 and MoS2 together with their incredible mechanical properties has turned them into a most promising product for the lubrication industry. Fundamental studies on the mechanical properties of WS2 and MoS2 inorganic fullerene-like nanoparticles and nanotubes are presented in this review. A wide range of mechanical testing was conducted on WS2 and MoS2 nanoparticles. The main focus of this review will be on single nanoparticle experiments in situ electron microscopy as it enables simultaneous structure and properties characterization. Although it is quite challenging, the single nanoparticle approach provides us with the ability to elucidate the intrinsic properties of WS2 and MoS2 inorganic fullerenes and nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360, 444 (1992).

    Article  Google Scholar 

  2. L. Margulis, G. Salitra, R. Tenne, and M. Talianker, Nature 365, 113 (1993).

    Article  Google Scholar 

  3. Y. Feldman, E. Wasserman, D.J. Srolovitz, and R. Tenne, Science 267, 222 (1995).

    Article  Google Scholar 

  4. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269, 966 (1995).

    Article  Google Scholar 

  5. R. Tenne and G. Seifert, Annu. Rev. Mater. Res. 39, 387 (2009).

    Article  Google Scholar 

  6. R. Tenne, R. Rosentsveig, and A. Zak, Phys. Status Solidi 210, 2253 (2013).

    Article  Google Scholar 

  7. R. Tenne, Front. Phys. 9, 370 (2013).

    Article  Google Scholar 

  8. Y. Rosenfeld Hacohen, E. Grunbaum, R. Tenne, J. Sloan, and J.L. Hutchison, Nature 395, 336 (1998).

    Article  Google Scholar 

  9. M. Nath and C.N.R. Rao, Angew. Chem. Int. Ed. 41, 3451 (2002).

    Article  Google Scholar 

  10. A. Albu-Yaron, T. Arad, M. Levy, R. Popovitz-Biro, R. Tenne, J.M. Gordon, D. Feuermann, E.A. Katz, M. Jansen, and C. Mühle, Adv. Mater. 18, 2993 (2006).

    Article  Google Scholar 

  11. S. Avivi, Y. Mastai, and A. Gedanken, J. Am. Chem. Soc. 122, 4331 (2000).

    Article  Google Scholar 

  12. R. Popovitz-Biro, A. Twersky, Y.R. Hacohen, and R. Tenne, Isr. J. Chem. 41, 7 (2001).

    Article  Google Scholar 

  13. M. Niederberger, H.J. Muhr, F. Krumeich, F. Bieri, D. Günther, and R. Nesper, Chem. Mater. 12, 1995 (2000).

    Article  Google Scholar 

  14. U.K. Gautam, S.R.C. Vivekchand, A. Govindaraj, G.U. Kulkarni, N.R. Selvi, and C.N.R. Rao, J. Am. Chem. Soc. 127, 3658 (2005).

    Article  Google Scholar 

  15. A. Rubio, J.L. Corkill, and M.L. Cohen, Phys. Rev. B 49, 5081 (1994).

    Article  Google Scholar 

  16. R.A. Evarestov, Theoretical Modeling of Inorganic Nanostructures (Berlin Heidelberg: Springer, 2015).

    Book  Google Scholar 

  17. L. Krusin-Elbaum, D.M. Newns, H. Zeng, V. Derycke, J.Z. Sun, and R. Sandstrom, Nature 431, 672 (2004).

    Article  Google Scholar 

  18. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160 (1998).

    Article  Google Scholar 

  19. G. Radovsky, R. Popovitz-Biro, D.G. Stroppa, L. Houben, and R. Tenne, Acc. Chem. Res. 47, 406 (2014).

    Article  Google Scholar 

  20. L.S. Panchakarla, G. Radovsky, L. Houben, R. Popovitz-biro, R.E. Dunin-Borkowski, and R. Tenne, J. Phys. Chem. Lett. 5, 3724 (2014).

    Article  Google Scholar 

  21. C.N.R. Rao and A. Govindaraj, Adv. Mater. 21, 4208 (2009).

    Article  Google Scholar 

  22. M. Remskar, Adv. Mater. 16, 1497 (2004).

    Article  Google Scholar 

  23. M. Bar-Sadan, I. Kaplan-Ashiri, and R. Tenne, Eur. Phys. J. Spec. Top. 149, 71 (2007).

    Article  Google Scholar 

  24. Y. Xiong, B.T. Mayers, and Y. Xia, Chem. Commun. 5013 (2005).

  25. A. Rothschild, J. Sloan, and R. Tenne, J. Am. Chem. Soc. 122, 5169 (2000).

    Article  Google Scholar 

  26. W.K. Hsu, Y.Q. Zhu, C.B. Boothroyd, I. Kinloch, S. Trasobares, H. Terrones, N. Grobert, M. Terrones, R. Escudero, G.Z. Chen, C. Colliex, A.H. Windle, D.J. Fray, H.W. Kroto, and D.R.M. Walton, Chem. Mater. 12, 3541 (2000).

    Article  Google Scholar 

  27. A. Zak, L. Sallacan-Ecker, A. Margolin, M. Genut, and R. Tenne, Nano 4, 91 (2009).

    Article  Google Scholar 

  28. Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J.L. Hutchison, and R. Tenne, J. Am. Chem. Soc. 118, 5362 (1996).

    Article  Google Scholar 

  29. Y.D. Li, X.L. Li, R.R. He, J. Zhu, and Z.X. Deng, J. Am. Chem. Soc. 124, 1411 (2002).

    Article  Google Scholar 

  30. A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro, and R. Tenne, J. Mater. Chem. 14, 617 (2004).

    Article  Google Scholar 

  31. F. Hoshyargar, A. Yella, M. Pantheofer, and W. Tremel, Chem. Mater. 23, 4716 (2011).

    Article  Google Scholar 

  32. Y. Zhu and H.D. Espinosa, Proc. Natl. Acad. Sci. U. S. A. 102, 14503 (2005).

    Article  Google Scholar 

  33. M.A. Haque and M.T.A. Saif, Exp. Mech. 42, 123 (2002).

    Article  Google Scholar 

  34. A.H. Barber, S.R. Cohen, and H. Daniel Wagner, Phys. Rev. Lett. 92, 186103 (2004).

    Article  Google Scholar 

  35. H.D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, Appl. Phys. Lett. 72, 188 (1998).

    Article  Google Scholar 

  36. O. Lourie, D. Cox, and H. Wagner, Phys. Rev. Lett. 81, 1638 (1998).

    Article  Google Scholar 

  37. O. Lourie and H.D. Wagner, J. Mater. Res. 13, 2418 (1998).

    Article  Google Scholar 

  38. A.H. Barber, S.R. Cohen, and H.D. Wagner, Appl. Phys. Lett. 82, 4140 (2003).

    Article  Google Scholar 

  39. O. Lourie and H.D. Wagner, Appl. Phys. Lett. 73, 3527 (1998).

    Article  Google Scholar 

  40. L. Rapoport, Y. Bilik, Y. Feldman, and M. Homyonfer, Nature 387, 791 (1997).

    Article  Google Scholar 

  41. L. Rapoport, V. Leshchinsky, I. Lapsker, Y. Volovik, O. Nepomnyashchy, M. Lvovsky, R. Popovitz-Biro, Y. Feldman, and R. Tenne, Wear 255, 785 (2003).

    Article  Google Scholar 

  42. A.R. Adini, Y. Feldman, S.R. Cohen, L. Rapoport, A. Moshkovich, M. Redlich, J. Moshonov, B. Shay, and R. Tenne, J. Mater. Res. 26, 1234 (2011).

    Article  Google Scholar 

  43. O. Goldbart, O. Elianov, D. Shumalinsky, L. Lobik, S. Cytron, R. Rosentsveig, H.D. Wagner, and R. Tenne, Nanoscale 5, 8526 (2013).

    Article  Google Scholar 

  44. O. Goldbart, A. Sedova, L. Yadgarov, R. Rosentsveig, D. Shumalinsky, L. Lobik, H.D. Wagner, and R. Tenne, Tribol. Lett. 55, 103 (2014).

    Article  Google Scholar 

  45. M. Naffakh, A.M. Díez-Pascual, C. Marco, M.A. Gómez, and I. Jiménez, J. Phys. Chem. B 114, 11444 (2010).

    Article  Google Scholar 

  46. M. Pardo, T. Shuster-Meiseles, S. Levin-Zaidman, A. Rudich, and Y. Rudich, Environ. Sci. Technol. 48, 3457 (2014).

    Article  Google Scholar 

  47. M. Redlich, A. Katz, L. Rapoport, H.D. Wagner, Y. Feldman, and R. Tenne, Dent. Mater. 24, 1640 (2008).

    Article  Google Scholar 

  48. R. Ron, D. Zbaida, I.Z. Kafka, R. Rosentsveig, I. Leibovitch, and R. Tenne, Nanoscale 6, 5251 (2014).

    Article  Google Scholar 

  49. G.R. Samorodnitzky-, M. Redlich, L. Rapoport, Y. Feldman, and R. Tenne, Nanomedicine 4, 943 (2009).

    Article  Google Scholar 

  50. H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, and R. Tenne, ACS Nano 5, 1276 (2011).

    Article  Google Scholar 

  51. Y.Q. Zhu, T. Sekine, K.S. Brigatti, S. Firth, R. Tenne, R. Rosentsveig, H.W. Kroto, and D.R.M. Walton, J. Am. Chem. Soc. 125, 1329 (2003).

    Article  Google Scholar 

  52. L. Joly-Pottuz, J.M. Martin, F. Dassenoy, M. Belin, G. Montagnac, B. Reynard, and N. Fleischer, J. Appl. Phys. 99, 023524 (2006).

    Article  Google Scholar 

  53. M. Shneider, H. Dodiuk, S. Kenig, and R. Tenne, J. Adhes. Sci. Technol. 24, 1083 (2010).

    Article  Google Scholar 

  54. A.M. Díez-Pascual, M. Naffakh, and M.A. Gómez-Fatou, Mater. Chem. Phys. 130, 126 (2011).

    Article  Google Scholar 

  55. M. Naffakh, M. Remškar, C. Marco, M.A. Gómez-Fatou, and I. Jiménez, J. Mater. Chem. 21, 3574 (2011).

    Article  Google Scholar 

  56. E. Zohar, S. Baruch, M. Shneider, H. Dodiuk, S. Kenig, R. Tenne, and H.D. Wagner, J. Adhes. Sci. Technol. 25, 1603 (2011).

    Article  Google Scholar 

  57. E. Zohar, S. Baruch, M. Shneider, H. Dodiuk, S. Kenig, H.D. Wagner, A. Zak, A. Moshkovith, L. Rapoport, and R. Tenne, Sensors and Transducers 12, 53 (2011).

    Google Scholar 

  58. M. Naffakh, A.M. Díez-Pascual, M. Remškar, and C. Marco, J. Mater. Chem. 22, 17002 (2012).

    Article  Google Scholar 

  59. H. Dodiuk, O. Kariv, S. Kenig, and R. Tenne, J. Adhes. Sci. Technol. 28, 38 (2014).

    Article  Google Scholar 

  60. M. Naffakh, A.M. Díez-Pascual, C. Marco, G.J. Ellis, and M.A. Gómez-Fatou, Prog. Polym. Sci. 38, 1163 (2013).

    Article  Google Scholar 

  61. M. Shneider, H. Dodiuk, R. Tenne, and S. Kenig, Polym. Eng. Sci. 53, 2624 (2013).

    Article  Google Scholar 

  62. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, and R. Tenne, J. Mater. Res. 19, 454 (2004).

    Article  Google Scholar 

  63. I. Kaplan-Ashiri, S.R. Cohen, N. Apter, Y. Wang, G. Seifert, H.D. Wagner, and R. Tenne, J. Phys. Chem. C 111, 8432 (2007).

    Article  Google Scholar 

  64. K.S. Nagapriya, O. Goldbart, I. Kaplan-Ashiri, G. Seifert, R. Tenne, and E. Joselevich, Phys. Rev. Lett. 101, 195501 (2008).

    Article  Google Scholar 

  65. E. Kalfon-Cohen, O. Goldbart, R. Schreiber, S.R. Cohen, D. Barlam, T. Lorenz, A. Enyashin, and G. Seifert, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 29, 021009 (2011).

    Article  Google Scholar 

  66. O. Tevet, O. Goldbart, S.R. Cohen, R. Rosentsveig, R. Popovitz-Biro, H.D. Wagner, and R. Tenne, Nanotechnology 21, 365705 (2010).

    Article  Google Scholar 

  67. I. Lahouij, F. Dassenoy, B. Vacher, and J.M. Martin, Tribol. Lett. 45, 131 (2012).

    Article  Google Scholar 

  68. I. Lahouij, E.W. Bucholz, B. Vacher, S.B. Sinnott, J.M. Martin, and F. Dassenoy, Nanotechnology 23, 375701 (2012).

    Article  Google Scholar 

  69. D. Maharaj and B. Bhushan, Mat. Sci. Eng. R. 95, 1 (2015).

    Article  Google Scholar 

  70. P. Rabaso, F. Ville, F. Dassenoy, M. Diaby, P. Afanasiev, J. Cavoret, B. Vacher, and T. Le Mogne, Wear 320, 161 (2014).

    Article  Google Scholar 

  71. J. Tannous, F. Dassenoy, I. Lahouij, T. Le Mogne, B. Vacher, A. Bruhács, and W. Tremel, Tribol. Lett. 41, 55 (2011).

    Article  Google Scholar 

  72. M. Stefanov, A.N. Enyashin, T. Heine, and G. Seifert, J. Phys. Chem. C 112, 17764 (2008).

    Article  Google Scholar 

  73. I. Lahouij, F. Dassenoy, L. Knoop, J.-M. Martin, and B. Vacher, Tribol. Lett. 42, 133 (2011).

    Article  Google Scholar 

  74. O. Tevet, P. Von-Huth, R. Popovitz-Biro, R. Rosentsveig, H.D. Wagner, and R. Tenne, Proc. Natl. Acad. Sci. U. S. A. 108, 19901 (2011).

    Article  Google Scholar 

  75. M. Yu, B. Files, S. Arepalli, and R. Ruoff, Phys. Rev. Lett. 84, 5552 (2000).

    Article  Google Scholar 

  76. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Science. 287, 637 (2000).

    Article  Google Scholar 

  77. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, and R. Tenne, Proc. Natl. Acad. Sci. U. S. A. 103, 523 (2006).

    Article  Google Scholar 

  78. D. Zhang, J.-M. Breguet, R. Clavel, L. Phillippe, I. Utke, and J. Michler, Nanotechnology 20, 365706 (2009).

    Article  Google Scholar 

  79. X. Wei, M.S. Wang, Y. Bando, and D. Golberg, Adv. Mater. 22, 4895 (2010).

    Article  Google Scholar 

  80. D. Zhang, J.M. Breguet, R. Clavel, V. Sivakov, S. Christiansen, and J. Michler, J. Microelectromechanical Syst. 19, 663 (2010).

    Article  Google Scholar 

  81. D.M. Tang, X. Wei, M.S. Wang, N. Kawamoto, Y. Bando, C. Zhi, M. Mitome, A. Zak, R. Tenne, and D. Golberg, Nano Lett. 13, 1034 (2013).

    Article  Google Scholar 

  82. A. Zak, L. Sallacan-Ecker, A. Margolin, Y. Feldman, R. Popovitz-Biro, A. Albu-Yaron, M. Genut, and R. Tenne, Fuller. Nanotub. Car. N. 19, 18 (2011).

    Article  Google Scholar 

  83. M.S. Wang, I. Kaplan-Ashiri, X.L. Wei, R. Rosentsveig, H.D. Wagner, R. Tenne, and L.M. Peng, Nano Res. 1, 22 (2008).

    Article  Google Scholar 

  84. S.P. Timoshenko and J.M. Gere, Theory of Elastic Stability, Chap. 2 (New York: McGraw-Hill, 1961), p. 76.

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Israel Science Foundation; the FTA grant of the Israel National NanoInitiative; the Israel Science Foundation; the H. Perlman Foundation; Irving and Azelle Waltcher Foundation in honor of Prof. M. Levy; the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging and Taiho Kogyo Tribology Research Foundation (TTRF), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ifat Kaplan-Ashiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan-Ashiri, I., Tenne, R. On the Mechanical Properties of WS2 and MoS2 Nanotubes and Fullerene-Like Nanoparticles: In Situ Electron Microscopy Measurements. JOM 68, 151–167 (2016). https://doi.org/10.1007/s11837-015-1659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1659-2

Keywords

Navigation