Skip to main content
Log in

Mechanical Activation-Assisted Reductive Leaching of Cadmium from Zinc Neutral Leaching Residue Using Sulfur Dioxide

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, zinc neutral leaching residue was mechanically activated by ball-milling. The subsequent leaching behavior and kinetics of cadmium extraction in a mixed SO2-H2SO4 system were studied. Changes in the crystalline phase, lattice distortion, particle size and morphology, which were induced by mechanical activation, were also investigated. The activated samples showed different physicochemical characteristics, and cadmium extraction was found to be easier than for the un-activated samples. Under the same conditions, mechanical activation contributed to higher cadmium leaching. The cadmium extraction kinetics at 75–95°C was found to fit the shrinking core model. The raw neutral leaching residue, and the samples activated for 60 min and 120 min had a calculated activation energy of 65.02 kJ/mol, 59.45 kJ/mol and 53.46 kJ/mol, respectively. The leaching residue was characterized by ICP, XRD and SEM analysis. According to XRD analysis, the main phases in the residue were lead sulfate (PbSO4), zinc sulfide (ZnS) and cadmium sulfide (CdS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X.W. Wu, Y.H. Liang, T.T.Y. Jin, T.T. Ye, Q.H. Kong, Z.J. Wang, L.J. Lei, I.A. Bergdahl, and G.F. Nordberg, Environ. Res. 108, 233 (2008).

    Article  Google Scholar 

  2. M. Trzcinka-Ochocka, M. Jakubowski, G. Razniewska, T. Halatek, and A. Gazewski, Environ. Res. 95, 143 (2004).

    Article  Google Scholar 

  3. M. Gharabaghi, M. Irannajad, and A.R. Azadmehr, Sep. Purif. Technol. 86, 9 (2012).

    Article  Google Scholar 

  4. M.S. Safarzadeh, D. Moradkhani, and M. Ojaghi-Ilkhchi, J. Hazard. Mater. 163, 880 (2009).

    Article  Google Scholar 

  5. M.S. Safarzadeh, D. Moradkhani, M.O. Ilkhchi, and N.H. Golshan, Sep. Purif. Technol. 58, 367 (2008).

    Article  Google Scholar 

  6. N. Leclerc, E. Meux, and J.M. Lecuire, Hydrometallurgy 70, 175 (2003).

    Article  Google Scholar 

  7. M. Benamor, Z. Bouariche, T. Belaid, and M.T. Draa, Sep. Purif. Technol. 59, 74 (2008).

    Article  Google Scholar 

  8. J. Moghaddam, R. Sarraf-Mamoory, M. Abdollahy, and Y. Yamini, Sep. Purif. Technol. 51, 157 (2006).

    Article  Google Scholar 

  9. M.S. Safarzadeh, M.S. Bafghi, D. Moradkhani, and M.O. Ilkhchi, Miner. Eng. 20, 211 (2007).

    Article  Google Scholar 

  10. Y.J. Zhang, X.H. Li, L.P. Pan, X.Y. Liang, and X.P. Li, Hydrometallurgy 100, 172 (2010).

    Article  Google Scholar 

  11. C. Abbruzzese, Hydrometallurgy 25, 85 (1990).

    Article  Google Scholar 

  12. G.K. Das and J.A.B. de Lange, Hydrometallurgy 105, 264 (2011).

    Article  Google Scholar 

  13. D. Grimanelis, P. Neou-Syngouna, and H. Vazarlis, Hydrometallurgy 31, 139 (1992).

    Article  Google Scholar 

  14. K.B. Hallberg, B.M. Grail, C.A. du Plessis, and D. Barrie Johnson, Miner. Eng. 24, 620 (2011).

    Article  Google Scholar 

  15. L.M. Petrie, Appl. Geochem. 10, 253 (1995).

    Article  Google Scholar 

  16. G. Senanayake, J. Childs, B.D. Akerstrom, and D. Pugaev, Hydrometallurgy 110, 13 (2011).

    Article  Google Scholar 

  17. T.H. Kim, G. Senanayake, J.G. Kang, J.S. Sohn, K.I. Rhee, S.W. Lee, and S.M. Shin, Hydrometallurgy 96, 154 (2009).

    Article  Google Scholar 

  18. M. Hashemzadehfini, J. FiceriovÁ, E. Abkhoshk, and B.K. Shahraki, Trans. Nonferrous Metals Soc. China 21, 2744 (2011).

    Article  Google Scholar 

  19. Z.W. Zhao, S. Long, A.L. Chen, G.S. Huo, H.G. Li, X.J. Jia, and X.Y. Chen, Hydrometallurgy 99, 255 (2009).

    Article  Google Scholar 

  20. T.C. Yuan, Q.Y. Cao, and J. Li, Hydrometallurgy 104, 136 (2010).

    Article  Google Scholar 

  21. K. Tkáčová, V. Šepelák, N. Števulová, and V.V. Boldyrev, J. Solid State Chem. 123, 100 (1996).

    Article  Google Scholar 

  22. P. Baláž, L. Takacs, M. Luxová, E. Godočíková, and J. Ficeriová, Int. J. Miner. Process. 74, S365 (2004).

    Article  Google Scholar 

  23. M.T. Tang, Z.H. Xia, L.S. Qing, Y. Luo, and C.B. Tang, Ming Metal. Eng. 25, 53 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Key Project of Science and Technology of Hunan province (2012FJ1010), National Natural Science Foundation of China (51474247), Science and Technology Program for Public Wellbeing (2012GS430201) and the National high technology research and development program of China (2011AA061001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Min, X., Chai, L. et al. Mechanical Activation-Assisted Reductive Leaching of Cadmium from Zinc Neutral Leaching Residue Using Sulfur Dioxide. JOM 67, 3010–3021 (2015). https://doi.org/10.1007/s11837-015-1623-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1623-1

Keywords

Navigation